Connect with us

Horoscopo

La computadora de la estación espacial de Hewlett Packard Enterprise está en demanda

Published

on

Preguntas y respuestas con el investigador principal de HPE Spaceborne Computer-2, Mark Fernandez

Desde su viaje de febrero de 2020 a la Estación Espacial Internacional, Spaceborne Computer-2 ha realizado 20 experimentos centrados en la atención médica, las comunicaciones, la observación de la Tierra y las ciencias biológicas. Sin embargo, la cola para acceder a la computadora comercial disponible en la nube Azure de Microsoft continúa creciendo.

Mark Fernandez, investigador principal de Spaceborne Computer-2. Crédito: HPE

Mark Fernandez, investigador principal de Spaceborne Computer-2, ve un futuro brillante para la informática espacial. Él espera que se instalen computadoras cada vez más capaces en satélites y se alojen en centros de datos en órbita en los próximos años. Los procesadores Edge procesarán datos en la luna y Lunar Gateway de la NASA albergará recursos informáticos avanzados, dijo Fernández. Noticias espaciales.

Fernández, quien tiene un doctorado en informática de la Universidad del Sur de Mississippi, fue desarrollador de software para la Spaceborne Computer original de HPE, una supercomputadora que llegó a la ISS en agosto de 2017 y regresó a la Tierra un año y medio después en un SpaceX Dragon. carga. cápsula.

¿Qué quiere decir la gente cuando habla de supercomputadoras en el espacio?

Los pequeños clústeres en el borde se posicionan como supercomputadoras porque son más que un pequeño dispositivo de borde. Llamamos a Spaceborne-1 una supercomputadora porque hicimos un teraflop de computación en el espacio. Eso es órdenes de magnitud más de lo que nadie ha hecho antes.

¿Qué aprendes de Spaceborne Computer-2?

Lo que me asombra es la diversidad de experiencias. Tenemos 39 experiencias en cola, y el número de experiencias está creciendo.

READ  Amazon acaba de lanzar una colección de soluciones para espacios reducidos para el hogar: qué comprar antes de vender

Analizamos el ADN de los astronautas. Este, en particular, me atrae porque los científicos han esperado semanas o meses para traer esta gran secuencia de ADN a la Tierra para su análisis. Puede comparar este gran conjunto de datos con el gran genoma humano, pero solo le interesan las mutaciones.

Bueno, tardamos unos 13 minutos en procesarlo y luego unos dos segundos en descargarlo. De repente, los científicos dijeron que en lugar de monitorear la salud de un astronauta todos los meses, podrían monitorear a toda la tripulación diariamente y tener una mejor idea de cuándo los viajes espaciales los están afectando negativamente.

Examinamos cómo los satélites se comunican entre sí. Diferentes tipos de cifrado, diferentes tipos de protocolos, diferentes tipos de compresión.

¿Qué te da más seguridad y consume menos energía?

Muchas experiencias tienen que ver con el clima y la preparación para desastres. Las imágenes de alta resolución de tormentas y tornados son archivos de datos de gran tamaño. Básicamente, los socorristas solo quieren saber dónde está el incendio forestal. ¿Cuál es la trayectoria del tornado? Puedes decirles eso en pocas palabras.

en lugar de fotos?

Una foto tarda una eternidad en bajar. Podemos lidiar con eso. Quiero saber dónde está inundado y no inundado. Quiero saber si la carretera es transitable o no.

¿Estás enviando solo la información más valiosa al suelo?

Esta es la primera capa de la cebolla que exploramos. Es una ventaja inteligente. No queremos llevar toda la informática a la periferia. No queremos llevar toda la informática a la nube. Si tengo un flujo de trabajo de varios pasos, puedo hacer dos o tres pasos al límite. Pero sería mucho mejor transmitir esos resultados intermedios más pequeños a la nube.

READ  “Estructuras ocultas” descubiertas en las profundidades del lado oscuro de la Luna

¿Por ejemplo?

Se remonta al ADN de los astronautas. Las mutaciones se actualizan continuamente en las bases de datos del Instituto Nacional de Salud y el Instituto Nacional del Cáncer. Tenemos la nube para buscar en estas bases de datos.

¿Cuál es el mejor enfoque para los diferentes tipos de datos?

Tenemos científicos serios a la cabeza de la hélice que ejecutan cosas solo en la nube o solo en el espacio en Spaceborne Computer. Lo diferencian. Lo ejecutan solo en la CPU, solo en la GPU. Ofrecen pautas.

La gente también habla de procesamiento a bordo para operaciones satelitales.

Analógico es conducción autónoma. Al igual que todos los automóviles se comunicarán entre sí, todos estos satélites se comunicarán entre sí. Uno de ellos levantará la mano y dirá: “Tengo buena conectividad con la Tierra. Transmitiré este mensaje. Entonces todos están de acuerdo.

El Spaceborne Computer-2 de Hewlett Packard Enterprise, enviado a la Estación Espacial Internacional en febrero de 2021, está conectado a la nube Azure de Microsoft a través de las estaciones terrestres de la NASA y HPE. Crédito: NASA

HPE estableció una alianza en 2019 con OrbitsEdge, una startup de Florida con un bus satelital para dispositivos electrónicos sensibles. ¿Está trabajando en la instalación de equipos HPE en satélites OrbitsEdge?

Si en efecto. OrbitsEdge configura un satélite con varias computadoras HPE separadas. Para usted, se parece a su computadora en su satélite. Pero en realidad albergan varias computadoras de varias personas completamente aisladas entre sí, ya que se encuentran en dispositivos físicamente separados. Pueden ejecutar todos los protocolos que deseen y todas las comunicaciones que deseen.

¿Cómo visualiza los recursos informáticos en el espacio cislunar?

Cuando lleguemos a la luna, el centro de datos y la computación de alto rendimiento estarán orbitando la luna, y los puestos de avanzada estarán en la periferia.

READ  Aevum construye un dron modular autónomo para entregas espaciales y terrestres - TechCrunch

¿Cuáles son los desafíos futuros para la computación espacial?

Todos ellos están relacionados con la exploración espacial. La energía, la refrigeración y las redes no son estables. La creación de redes es la más inestable. Hay varias veces al día [on ISS] cuando no tenemos conectividad. Si fuera tu celular, estarías buscando un nuevo proveedor. Pero la estación espacial no tiene opción.

¿Dónde imaginas que suceda en la órbita de la Tierra, en la Luna y en Marte?

Si OrbitsEdge obtiene su prueba de concepto y puede tener un satélite multiinquilino, el siguiente paso lógico es un centro de datos multiinquilino construido a partir de satélites más grandes. OrbitsEdge se centra en la energía, la refrigeración y las redes. Nos dejan ese cálculo a nosotros.

En la luna, tendrías comunicación de baja energía con la puerta de enlace. La puerta de enlace tendrá energía, refrigeración y almacenamiento. Se está considerando una arquitectura similar para el puesto avanzado de Marte.

¿Las aplicaciones espaciales requieren continuamente más recursos informáticos como las aplicaciones terrestres?

Sí, lo quiere más rápido, quiere una mejor red y quiere más potencia. Nadie se quejó de tener muchas computadoras espaciales en este momento. Ellos preguntan, «¿Cuándo podré superar esto?»

Este artículo apareció originalmente en la edición de enero de 2022 de la revista SpaceNews.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Un vídeo de la NASA muestra lo que pasaría si cayeras en un agujero negro

Published

on

Un vídeo de la NASA muestra lo que pasaría si cayeras en un agujero negro

En un nuevo vídeo directamente de la película. InterestelarLa NASA ha revelado cómo se vería si cayeras en un agujero negro.

La simulación se creó utilizando una supercomputadora de la NASA e imagina lo que una persona podría ver al sumergirse más allá del horizonte de sucesos de un agujero negro hacia el abismo que se encuentra más allá.

Otra simulación muestra lo que vería una persona que volara sobre un agujero negro, con el espacio pareciendo doblarse y girar a medida que el espectador pasa.

Imagen de una simulación de la NASA que muestra la caída en un agujero negro (principal) y el agujero negro supermasivo visto desde lejos (recuadro). Esta simulación muestra lo que vería una persona que cayera en un agujero negro.

Centro de vuelos espaciales Goddard de la NASA/J. Schnittman y B. Powell

«Simulé dos escenarios diferentes, uno en el que una cámara, un sustituto de un atrevido astronauta, pierde por poco el horizonte de sucesos y retrocede, y el otro, en el que cruza el límite, sellando su destino», dijo el creador de la simulación Jeremy Schnittman. dijo en un comunicado un astrofísico del Centro de Vuelos Espaciales Goddard de la NASA en Greenbelt, Maryland.

Los agujeros negros son objetos que tienen una atracción gravitacional tan fuerte que ni siquiera la luz puede escapar. Hay varios tipos, incluidos los agujeros negros estelares (formados por el colapso de estrellas individuales) y los agujeros negros supermasivos (que se encuentran en los centros de la mayoría de las galaxias, incluida la Vía Láctea). Cada agujero negro tiene un horizonte de sucesos, que es el límite alrededor de un agujero negro más allá del cual ninguna luz u otra radiación puede escapar.

READ  Space Cafè Radio - de gira en Praga - con el Dr. Namrata Goswami

El agujero negro en la simulación de la NASA es un agujero negro supermasivo, como el del centro de nuestra galaxia, con una masa alrededor de 4,3 millones de veces la de nuestro sol y un horizonte de sucesos de unos 16 millones de kilómetros de diámetro. El brillante anillo de gas que rodea el agujero negro se conoce como disco de acreción y brilla intensamente debido a la gran cantidad de calor generado por la fricción.

La simulación muestra al espectador comenzando a unos 400 millones de kilómetros del agujero negro y cayendo rápidamente hacia él, con el disco de acreción combándose y deformándose a medida que el espectador se acerca.

«Si tienes la opción, querrás caer en un agujero negro supermasivo», dijo Schnittman. «Los agujeros negros de masa estelar, que contienen hasta unas 30 masas solares, tienen horizontes de sucesos mucho más pequeños y fuerzas de marea más fuertes, que pueden destrozar los objetos que se acercan antes de que alcancen el horizonte».

Esto se debe a que la fuerza de gravedad ejercida sobre tu cuerpo sería más fuerte en tus pies que en tu cabeza, estirándote átomo por átomo en un proceso llamado espaguetificación.

«Un agujero negro de masa estelar tiene fuerzas de marea tan extremas fuera de su horizonte de sucesos (un astronauta que cayera con los pies por delante sentiría una gravedad más fuerte en sus pies que en su cabeza) que nuestro astronauta se desgarraría mucho antes de alcanzar el horizonte de sucesos», dijo Ben. Farr, físico de ondas gravitacionales y astrónomo de la Universidad de Oregón, dijo anteriormente Semana de noticias. «Un objeto experimenta fuerzas de marea cuando la fuerza de gravedad que experimenta debido a un objeto masivo es más fuerte en un lado que en el otro».

READ  Las imágenes terrestres más nítidas de las lunas de Júpiter Europa y Ganímedes revelan su paisaje helado

Para este agujero negro simulado, el espectador sólo tendría 12,8 segundos antes de ser destruido por la espaguetificación.

La otra simulación muestra a un espectador orbitando cerca del horizonte de sucesos pero sin llegar a cruzarlo. Una persona que se acercara tanto a un agujero negro de este tamaño regresaría 36 minutos más joven que aquellos que se quedaran más lejos, debido a la diferencia en la velocidad del tiempo que pasa cerca de un objeto con tanta gravedad.

«Esta situación puede ser aún más extrema», dijo Schnittman. «Si el agujero negro girara rápidamente, como el que se muestra en la película de 2014 Interestelarregresaría varios años más joven que sus compañeros de barco.

Estas simulaciones se realizaron utilizando la supercomputadora Discover del Centro de Simulación Climática de la NASA y ocupan aproximadamente 10 terabytes de datos.

«La gente suele preguntar sobre esto, y simular estos procesos difíciles de imaginar me ayuda a conectar las matemáticas de la relatividad con las consecuencias del mundo real en el universo real», dijo Schnittman.

¿Tiene algún consejo sobre una historia científica que Semana de noticias ¿debe cubrir? ¿Tiene alguna pregunta sobre los agujeros negros? Háganos saber a través de [email protected].