Connect with us

Horoscopo

Desvela los misterios de cómo funciona la vida

Published

on

Desvela los misterios de cómo funciona la vida

Por

Mirar la vida a escala atómica proporciona una comprensión más completa del mundo macroscópico.

La biología cuántica explora cómo los efectos cuánticos influyen en los procesos biológicos, lo que podría conducir a avances en medicina y biotecnología. A pesar de la suposición de que los efectos cuánticos desaparecen rápidamente en los sistemas biológicos, la investigación sugiere que estos efectos juegan un papel clave en los procesos fisiológicos. Esto abre la posibilidad de manipular estos procesos para crear dispositivos terapéuticos no invasivos controlados a distancia. Sin embargo, lograr esto requiere un nuevo enfoque interdisciplinario de la investigación científica.

Imagine usar su teléfono celular para monitorear la actividad de sus propias células para tratar lesiones y enfermedades. Suena como algo salido de la imaginación de un escritor de ciencia ficción demasiado optimista. Pero eso podría algún día ser una posibilidad gracias al campo emergente de la biología cuántica.

En las últimas décadas, los científicos han logrado avances increíbles en la comprensión y manipulación de sistemas biológicos a escalas cada vez más pequeñas, desde plegamiento de proteínas para Ingeniería genética. Y, sin embargo, apenas se comprende hasta qué punto los efectos cuánticos influyen en los sistemas vivos.

Los efectos cuánticos son fenómenos que ocurren entre átomos y moléculas que no pueden ser explicados por la física clásica. Se sabe desde hace más de un siglo que las reglas de la mecánica clásica, como las leyes del movimiento de Newton, descomponerse a escala atómica. En cambio, los objetos diminutos se comportan de acuerdo con un conjunto diferente de leyes conocidas como Mecánica cuántica.


La mecánica cuántica describe las propiedades de los átomos y las moléculas.

Para los humanos, que solo pueden percibir el mundo macroscópico, o lo que es visible a simple vista, la mecánica cuántica puede parecer contraria a la intuición y algo mágica. En el mundo cuántico están sucediendo cosas que no esperarías, como electrones «túneles» a través de diminutas barreras de energía y aparecer ileso en el otro lado, o estar en dos lugares diferentes al mismo tiempo en uno fenómeno llamado superposición.

estoy entrenado como ingeniero cuántico. La investigación en mecánica cuántica está generalmente orientada a la tecnología. Sin embargo, y algo sorprendente, cada vez hay más pruebas de que la naturaleza, una ingeniera con miles de millones de años de práctica, ha aprendido a utilizar la mecánica cuántica para trabajar de manera óptima. Si esto es cierto, significa que nuestra comprensión de la biología es radicalmente incompleta. También significa que posiblemente podríamos controlar los procesos fisiológicos utilizando las propiedades cuánticas de la materia biológica.

El quantismo en biología es probablemente real

Los investigadores pueden manipular los fenómenos cuánticos para crear una mejor tecnología. De hecho, ya vives en un mundo de la energía cuántica: desde punteros láser hasta[{» attribute=»»>GPS, magnetic resonance imaging and the transistors in your computer – all these technologies rely on quantum effects.

In general, quantum effects only manifest at very small length and mass scales, or when temperatures approach absolute zero. This is because quantum objects like atoms and molecules lose their “quantumness” when they uncontrollably interact with each other and their environment. In other words, a macroscopic collection of quantum objects is better described by the laws of classical mechanics. Everything that starts quantum dies classical. For example, an electron can be manipulated to be in two places at the same time, but it will end up in only one place after a short while – exactly what would be expected classically.


Los electrones pueden estar en dos lugares al mismo tiempo, pero eventualmente terminarán en un solo lugar.

En un sistema biológico complicado y ruidoso, por lo tanto, se espera que la mayoría de los efectos cuánticos se desvanezcan rápidamente, barridos en lo que el físico Erwin Schrödinger llamó el “ambiente cálido y húmedo de la célula.” Para la mayoría de los físicos, el hecho de que el mundo viviente opere a altas temperaturas y en entornos complejos implica que la física clásica puede describir de manera adecuada y completa la biología: sin cruce de barreras funky, sin presencia simultánea en varios lugares.

Los químicos, sin embargo, han suplicado durante mucho tiempo estar en desacuerdo. La investigación sobre reacciones químicas básicas a temperatura ambiente muestra sin ambigüedades que proceso que ocurre dentro de las biomoléculas como las proteínas y el material genético son el resultado de efectos cuánticos. Es importante destacar que estos efectos cuánticos nanoscópicos de corta duración son consistentes con la conducción de ciertos procesos fisiológicos macroscópicos que los biólogos han medido en células y organismos vivos. La investigación sugiere que los efectos cuánticos influyen en las funciones biológicas, incluyendo regulación de la actividad enzimática, detectar campos magnéticos, Metabolismo celular Y transporte de electrones en biomoléculas.

Cómo estudiar biología cuántica

La tentadora posibilidad de que los efectos cuánticos sutiles puedan alterar los procesos biológicos presenta una frontera emocionante y un desafío para los científicos. Estudiar los efectos de la mecánica cuántica en biología requiere herramientas capaces de medir escalas de tiempo cortas, escalas de longitud pequeñas y diferencias sutiles en los estados cuánticos que dan lugar a cambios fisiológicos, todo integrado en un entorno de laboratorio húmedo tradicional.

En mi trabajo, construyo instrumentos para estudiar y controlar las propiedades cuánticas de cosas pequeñas como los electrones. Así como los electrones tienen masa y carga, también tienen propiedad cuántica llamada espín. El espín define cómo interactúan los electrones con un campo magnético, de la misma manera que la carga define cómo interactúan los electrones con un campo eléctrico. Los experimentos cuánticos que he construido desde la escuela de doctoradoy ahora en mi propio laboratorio, pretendo aplicar campos magnéticos hechos a medida para alterar espines de electrones particulares.

La investigación ha demostrado que muchos procesos fisiológicos están influenciados por campos magnéticos débiles. Estos procesos incluyen desarrollo de células madre Y maduración, tasa de proliferación celular, reparación de material genético Y muchos otros. Estas respuestas fisiológicas a los campos magnéticos son consistentes con las reacciones químicas que dependen del giro de electrones particulares en las moléculas. La aplicación de un campo magnético débil para alterar los espines de los electrones puede controlar eficazmente los productos finales de una reacción química, con importantes consecuencias fisiológicas.


Las aves usan efectos cuánticos en la navegación.

Actualmente, la falta de comprensión de cómo funcionan estos procesos en[{» attribute=»»>nanoscale level prevents researchers from determining exactly what strength and frequency of magnetic fields cause specific chemical reactions in cells. Current cellphone, wearable and miniaturization technologies are already sufficient to produce tailored, weak magnetic fields that change physiology, both for good and for bad. The missing piece of the puzzle is, hence, a “deterministic codebook” of how to map quantum causes to physiological outcomes.

In the future, fine-tuning nature’s quantum properties could enable researchers to develop therapeutic devices that are noninvasive, remotely controlled and accessible with a mobile phone. Electromagnetic treatments could potentially be used to prevent and treat disease, such as brain tumors, as well as in biomanufacturing, such as increasing lab-grown meat production.

A whole new way of doing science

Quantum biology is one of the most interdisciplinary fields to ever emerge. How do you build community and train scientists to work in this area?

Since the pandemic, my lab at the University of California, Los Angeles and the University of Surrey’s Quantum Biology Doctoral Training Centre have organized Big Quantum Biology meetings to provide an informal weekly forum for researchers to meet and share their expertise in fields like mainstream quantum physics, biophysics, medicine, chemistry and biology.

Research with potentially transformative implications for biology, medicine and the physical sciences will require working within an equally transformative model of collaboration. Working in one unified lab would allow scientists from disciplines that take very different approaches to research to conduct experiments that meet the breadth of quantum biology from the quantum to the molecular, the cellular and the organismal.

The existence of quantum biology as a discipline implies that traditional understanding of life processes is incomplete. Further research will lead to new insights into the age-old question of what life is, how it can be controlled and how to learn with nature to build better quantum technologies.

Written by Clarice D. Aiello, Quantum Biology Tech (QuBiT) Lab, Assistant Professor of Electrical and Computer Engineering, University of California, Los Angeles.The Conversation

This article was first published in The Conversation.

READ  Los astronautas 'disparan' hacia la Luna y prueban en el terreno lunar de España una nueva cámara diseñada para el espacio
Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Un 'lienzo' de arte rupestre de 12.500 años de antigüedad en el Amazonas revela la conexión de los primeros estadounidenses con la vida silvestre

Published

on

Un 'lienzo' de arte rupestre de 12.500 años de antigüedad en el Amazonas revela la conexión de los primeros estadounidenses con la vida silvestre

Una galería de fotografías impactantes ocre Las pinturas dibujadas en enormes paredes rocosas ofrecen información sobre la estrecha relación entre los humanos y los animales que vivieron en el Amazonas hace miles de años.

La obra está ubicada sobre afloramientos rocosos del Cerro Azul, en la Serranía de la Lindosa, un acantilado en Colombia. Incluye 3.223 dibujos de humanos y animales, incluida una colección de peces, reptiles y mamíferos de distintos tamaños, según un nuevo estudio publicado en la edición de septiembre de la revista. Revista de Arqueología Antropológica.

Continue Reading

Horoscopo

La NASA está cerca de tomar una decisión sobre el destino de la nave espacial Starliner de Boeing

Published

on

La NASA está cerca de tomar una decisión sobre el destino de la nave espacial Starliner de Boeing
Agrandar / En esta fotografía tomada el 3 de julio se ve la nave espacial Strainer de Boeing acoplada a la Estación Espacial Internacional.

Los astronautas que abordaron la nave espacial Starliner de Boeing hacia la Estación Espacial Internacional el mes pasado aún no saben cuándo regresarán a la Tierra.

Los astronautas Butch Wilmore y Suni Williams han estado en el espacio durante 51 días, seis semanas más de lo previsto inicialmente, mientras los ingenieros en tierra resuelven problemas con el sistema de propulsión de Starliner.

Los problemas son dobles. Los propulsores de la nave espacial se sobrecalentaron y algunos de ellos se apagaron cuando Starliner se acercó a la estación espacial el 6 de junio. Otro problema, aunque quizás relacionado, son las fugas de helio en el sistema de propulsión del barco.

El jueves, funcionarios de la NASA y Boeing dijeron que todavía planeaban traer a Wilmore y Williams de regreso a bordo de la nave espacial Starliner. Durante las últimas semanas, los equipos de tierra completaron las pruebas de un propulsor en un banco de pruebas en White Sands, Nuevo México. Este fin de semana, Boeing y la NASA planean poner en órbita los propulsores de la nave espacial para comprobar su rendimiento una vez acoplada a la estación espacial.

«Creo que estamos empezando a acercarnos a esas piezas finales de la lógica de vuelo para asegurarnos de que podamos regresar a casa de manera segura, y ese es nuestro enfoque principal en este momento», dijo Stich.

Estos problemas han llevado a especulaciones de que la NASA podría decidir devolver a Wilmore y Williams a la Tierra a bordo de una nave espacial SpaceX Crew Dragon. Actualmente hay un barco Crew Dragon atracado en la estación y se espera que se lance otro con una nueva tripulación el próximo mes. Steve Stich, jefe del programa de tripulación comercial de la NASA, dijo que la agencia ha estudiado planes de respaldo para llevar a la tripulación de Starliner a casa a bordo de una cápsula SpaceX, pero el objetivo principal sigue siendo llevar a los astronautas de regreso a bordo de Starliner.

READ  predicciones sobre el amor, el trabajo y el dinero

«Nuestra primera opción es completar la misión», dijo Stich. “Hay muchas buenas razones para completar esta misión y traer a Butch y Suni de regreso a bordo de Starliner. Starliner fue diseñada, como nave espacial, para tener a la tripulación en la cabina. »

El Starliner fue lanzado desde la Estación Espacial de Cabo Cañaveral en Florida el 5 de junio. Wilmore y Williams son los primeros astronautas en volar al espacio a bordo de la cápsula de tripulación comercial de Boeing, y este vuelo de prueba tiene como objetivo allanar el camino para futuros vuelos operativos para rotar tripulaciones de cuatro hacia y desde la Estación Espacial Internacional.

Una vez que la NASA certifique completamente a Starliner para misiones operativas, la agencia tendrá dos naves espaciales amigables para los humanos disponibles para vuelos a la estación. Crew Dragon de SpaceX transporta astronautas desde 2020.

Pruebas, pruebas y más pruebas.

La NASA extendió la duración del vuelo de prueba de Starliner para realizar pruebas y analizar datos en un esfuerzo por generar confianza en la capacidad de la nave espacial para llevar a su tripulación a casa de manera segura y comprender mejor las causas profundas del sobrecalentamiento de los propulsores y las fugas de helio. Estos problemas se encuentran dentro del módulo de servicio Starliner, que se desecha para quemarse en la atmósfera al reingresar, mientras que el módulo de tripulación reutilizable, con los astronautas dentro, se lanza en paracaídas para un aterrizaje amortiguado por una bolsa de aire.

La más importante de estas pruebas consistió en una serie de disparos de prueba de un propulsor Starliner en tierra. Este propulsor se tomó de un conjunto de hardware planeado para volar en una futura misión Starlink, y los ingenieros lo sometieron a una prueba de esfuerzo, tirando de él repetidamente para replicar la secuencia de pulsos que vería en vuelo. Las pruebas simularon dos secuencias de vuelo a la estación espacial y cinco secuencias que realizaría el propulsor durante el desacoplamiento y la salida de órbita para regresar a la Tierra.

READ  Preguntas y respuestas respondidas: paradero de Chad Beebe, actualización de Cap Space, un jugador sorprendente de 2022

«Este propulsor ha sufrido una serie de pulsaciones, quizás incluso más de las que anticiparíamos en vuelo, y más agresivas en términos de dos ascensos y cinco descensos», dijo Stich. “Lo que observamos en el propulsor es el mismo tipo de degradación del empuje que observamos en órbita. En varios propulsores (en Starliner) vemos un empuje reducido, lo cual es importante. »

La computadora de vuelo de Starliner apagó cinco de los 28 propulsores del sistema de control de reacción de la nave espacial, producidos por Aerojet Rocketdyne, durante su encuentro con la estación espacial el mes pasado. Cuatro de los cinco propulsores se recuperaron después de sobrecalentarse y perder empuje, pero los funcionarios declararon que uno de los propulsores era inutilizable.

El propulsor probado en tierra mostró un comportamiento similar. Las inspecciones del propulsor en White Sands mostraron hinchazón en un sello de teflón de una válvula oxidante, lo que podría restringir el flujo del propulsor de tetróxido de nitrógeno. Los propulsores, cada uno de los cuales genera alrededor de 85 libras de empuje, consumen el oxidante de tetróxido de nitrógeno, o NTO, y lo mezclan con combustible de hidracina para la combustión.

Una válvula de mariposa, similar a la válvula de inflado de un neumático, está diseñada para abrirse y cerrarse para permitir que el tetróxido de nitrógeno fluya hacia el propulsor.

«Esta válvula tiene un sello de teflón en el extremo», explicó Nappi. “Bajo el efecto del calor y el vacío natural que se produce cuando se dispara el propulsor, esta junta se deformó e incluso se abombó ligeramente. »

READ  Enceladus, una "cuasi-luna", el cerebro de los astronautas en el espacio: onda corta: NPR

Stich dijo que los ingenieros están evaluando la integridad del sello de teflón para determinar si podría permanecer intacto durante el desacoplamiento y la salida de órbita de la nave espacial Starliner. No se necesitan propulsores mientras Starliner está conectado a la estación espacial.

“¿Podría esta foca en particular sobrevivir el resto del vuelo?” Esa es la parte importante”, dijo Stich.

Continue Reading

Horoscopo

El descubrimiento de restos de un virus antiguo gigante ofrece nuevas pistas sobre los orígenes de la vida compleja

Published

on

El descubrimiento de restos de un virus antiguo gigante ofrece nuevas pistas sobre los orígenes de la vida compleja

Un nuevo estudio ha descubierto que el código genético del Amoebidium unicelular contiene restos de antiguos virus gigantes, lo que proporciona información sobre la evolución genética de la vida compleja. Este hallazgo revela que estos genes virales, aunque potencialmente dañinos, se mantienen inactivos mediante procesos químicos dentro del ADN de Amoebidium, lo que sugiere una relación más compleja entre los virus y sus huéspedes, lo que podría afectar nuestra comprensión de la evolución genética de otros organismos, incluidos los humanos.

Los microorganismos revelan cómo nuestros predecesores unicelulares incorporaron ADN viral en sus propios genomas.

Los investigadores han descubierto restos de antiguos virus gigantes en el genoma de Amoebidium, un organismo unicelular, lo que sugiere que dichas secuencias virales pueden haber desempeñado un papel en la evolución de formas de vida complejas. Este estudio destaca la relación dinámica entre los virus y sus huéspedes, que también refleja la genética humana.

Un nuevo estudio publicado en la revista científica ha descubierto un giro sorprendente en la historia evolutiva de la vida compleja. Avances científicosInvestigadores de la Universidad Queen Mary de Londres han descubierto que un organismo unicelular, estrechamente relacionado con los animales, contiene restos de antiguos virus gigantes en su código genético. Este descubrimiento proporciona una mejor comprensión de cómo los organismos complejos pudieron adquirir algunos de sus genes y destaca la interacción dinámica entre los virus y sus huéspedes.

El estudio se centró en un microbio llamado Amoebidium, un parásito unicelular que se encuentra en ambientes de agua dulce. Al analizar el genoma de Amoebidium, los investigadores dirigidos por el Dr. Alex de Mendoza Soler, profesor titular de la Escuela de Ciencias Biológicas y del Comportamiento de Queen Mary, descubrieron una sorprendente abundancia de material genético de virus gigantes, algunos de los virus más grandes conocidos por la ciencia. Estas secuencias virales estaban fuertemente metiladas, una etiqueta química que a menudo silencia los genes.

READ  Enceladus, una "cuasi-luna", el cerebro de los astronautas en el espacio: onda corta: NPR

«Es como encontrar caballos de Troya escondidos dentro del Amoebidium ADN«Estas inserciones virales son potencialmente peligrosas, pero Amoebidium parece controlarlas silenciándolas químicamente», explica el Dr. de Mendoza Soler.


El microbio Amoebidium appalachense vive su ciclo de desarrollo en el laboratorio. Los núcleos se dividen dentro de una célula hasta la madurez (~40 h en el video), cuando cada núcleo se convierte en una sola célula y la colonia se rompe dando lugar a la descendencia. Crédito: Álex de Mendoza

Investigación actual e implicaciones.

Luego, los investigadores estudiaron el alcance de este fenómeno. Compararon los genomas de varios aislados de Amoebidium y encontraron una variación significativa en el contenido viral. Esto sugiere que el proceso de integración y silenciamiento viral es continuo y dinámico.

«Estos resultados desafían nuestra comprensión de la relación entre los virus y sus huéspedes», afirma el Dr. de Mendoza Soler. “Tradicionalmente, los virus se consideran invasores, pero este estudio sugiere una historia más compleja. Las inserciones virales pueden haber desempeñado un papel en la evolución de organismos complejos al proporcionarles nuevos genes. Y esto es posible gracias a la domesticación química del ADN de estos intrusos. »

Células de Amoebidium apalachense

Células de Amoebidium appalachense teñidas para detectar ADN (en azul, que muestra el núcleo) y actina (en verde), resaltando las membranas celulares en la etapa de celularización de la colonia. Crédito: Álex de Mendoza

Además, los descubrimientos realizados sobre Amoebidium ofrecen paralelos intrigantes con la forma en que nuestros propios genomas interactúan con los virus. Al igual que Amoebidium, los humanos y otros mamíferos tienen restos de virus antiguos, llamados retrovirus endógenos, incrustados en su ADN. Si bien estos restos se consideraban anteriormente “ADN basura” inactivo, ahora algunos pueden ser beneficiosos. Sin embargo, a diferencia de los virus gigantes que se encuentran en Amoebidium, los retrovirus endógenos son mucho más pequeños y el genoma humano es significativamente más grande. Investigaciones futuras pueden explorar estas similitudes y diferencias para comprender la compleja interacción entre virus y formas de vida complejas.

READ  Acoplamiento citoeléctrico: los campos eléctricos ajustan la función cerebral

Referencia: “La metilación del ADN permite la endogenización recurrente de virus gigantes en un animal relacionado” por Luke A. Sarre, Iana V. Kim, Vladimir Ovchinnikov, Marine Olivetta, Hiroshi Suga, Omaya Dudin, Arnau Sebé-Pedrós y Alex de Mendoza, 12 de julio , 2024, Avances científicos.
DOI: 10.1126/sciadv.ado6406

Continue Reading

Trending