Connect with us

Horoscopo

Acoplamiento citoeléctrico: los campos eléctricos ajustan la función cerebral

Published

on

Acoplamiento citoeléctrico: los campos eléctricos ajustan la función cerebral

Resumen: Los científicos presentan una hipótesis llamada «acoplamiento citoeléctrico» que sugiere que los campos eléctricos en el cerebro pueden manipular los componentes subcelulares neuronales, optimizando así la estabilidad y la eficiencia de la red. Proponen que estos campos permitan a las neuronas sintonizar la red de procesamiento de información hasta el nivel molecular.

Comparativamente, este proceso es similar a los hogares que organizan su configuración de TV para una experiencia de visualización óptima. La teoría, abierta a prueba, podría mejorar significativamente nuestra comprensión del funcionamiento interno del cerebro.

Reflejos:

  1. La hipótesis del acoplamiento citoeléctrico sugiere que los campos eléctricos en el cerebro pueden ajustar la estabilidad y la eficiencia de la red al influir en los componentes subcelulares neuronales.
  2. La capacidad del cerebro para adaptarse a un mundo cambiante incluye proteínas y moléculas que interactúan con los campos eléctricos generados por las neuronas.
  3. Esta nueva teoría, que sugiere una conexión macro a microscópica en el cerebro, es una hipótesis comprobable que podría revolucionar nuestra comprensión de la función cerebral.

Fuente: Instituto Picower para el Aprendizaje y la Memoria

Para producir sus muchas funciones, incluido el pensamiento, el cerebro trabaja en muchas escalas. La información, como objetivos o imágenes, se representa mediante actividad eléctrica coordinada entre redes de neuronas, mientras que dentro y alrededor de cada neurona, una mezcla de proteínas y otras sustancias químicas realiza físicamente la mecánica de participación en la red.

Un nuevo artículo de investigadores del MIT, la City-University of London y la Universidad Johns Hopkins postula que los campos eléctricos de la red influyen en la configuración física de los componentes subcelulares de las neuronas para optimizar la estabilidad y la eficiencia de la red, una hipótesis que los autores denominan «acoplamiento citoeléctrico».

«La información que procesa el cerebro desempeña un papel en el ajuste fino de la red hasta el nivel molecular», dijo el coautor Earl K. Miller, profesor de Picower en el Instituto Picower para el Aprendizaje y la Memoria del MIT. Avances en Neurobiología con el profesor asociado Dimitris Pinotsis del MIT y la City-University of London, y el profesor Gene Fridman de Johns Hopkins.

READ  Daily Telescope: una vista de nuestra estrella cuando la Tierra alcanza el perihelio
Las neuronas pueden formar circuitos dinámicamente al crear y eliminar conexiones, llamadas sinapsis, así como al fortalecer o debilitar estas uniones. Crédito: Noticias de neurociencia

“El cerebro se adapta a un mundo cambiante”, dijo Pinotsis. “Sus proteínas y moléculas también cambian. Pueden tener cargas eléctricas y deben ponerse al día con las neuronas que procesan, almacenan y transmiten información mediante señales eléctricas. Interactuar con los campos eléctricos de las neuronas parece necesario.

pensando en los campos

Uno de los principales objetivos del laboratorio de Miller es estudiar cómo las funciones cognitivas de alto nivel, como la memoria de trabajo, pueden surgir de forma rápida, flexible y fiable a partir de la actividad de millones de neuronas individuales.

Las neuronas pueden formar circuitos dinámicamente al crear y eliminar conexiones, llamadas sinapsis, así como al fortalecer o debilitar estas uniones. Pero eso solo forma un «mapa de ruta» alrededor del cual podría fluir la información, dijo Miller.

Miller descubrió que los circuitos neuronales específicos que representan colectivamente un pensamiento u otro están coordinados por una actividad rítmica, más conocida coloquialmente como «ondas cerebrales» de diferentes frecuencias.

Los ritmos «gamma» rápidos ayudan a transmitir las imágenes de nuestra visión (por ejemplo, un panecillo), mientras que las ondas «beta» más lentas pueden transmitir nuestros pensamientos más profundos sobre esa imagen (por ejemplo, «demasiadas calorías»).

En el momento adecuado, las ráfagas de estas ondas pueden transportar predicciones, escribir, almacenar y leer información en la memoria de trabajo, según ha demostrado el laboratorio de Miller. También se descomponen cuando lo hace la memoria de trabajo.

El laboratorio informó evidencia de que el cerebro podría manipular claramente los ritmos en ubicaciones físicas específicas para organizar aún más las neuronas para una cognición flexible, un concepto llamado «computación espacial».

Otro trabajo reciente del laboratorio ha demostrado que, si bien la participación de neuronas individuales dentro de las redes puede ser inestable y poco confiable, la información transportada por las redes de las que forman parte está representada de manera estable por los campos eléctricos globales generados por su actividad colectiva.

READ  La biblioteca del condado de Douglas necesita más espacio - Alexandria Echo Press

acoplamiento citoeléctrico

En el nuevo estudio, los autores combinan este patrón de actividad eléctrica rítmica que coordina las redes neuronales con otra evidencia que indica que los campos eléctricos pueden influir en las neuronas a nivel molecular.

Los investigadores, por ejemplo, han estudiado el acoplamiento efáptico, en el que las neuronas influyen en las propiedades eléctricas de las demás a través de la proximidad a sus membranas, en lugar de depender únicamente de los intercambios electroquímicos a través de las sinapsis. Esta diafonía eléctrica puede afectar las funciones neuronales, incluso cuándo y si aumentan para transmitir señales eléctricas a otras neuronas en un circuito.

Miller, Pinotsis y Fridman también citan investigaciones que muestran otras influencias eléctricas en las células y sus componentes, incluida la forma en que los campos guían el desarrollo neuronal y que los microtúbulos pueden alinearse con ellos.

Si el cerebro transporta información en campos eléctricos, y esos campos eléctricos pueden configurar neuronas y otras partes del cerebro que forman una red, entonces es probable que el cerebro use esa habilidad. El cerebro puede usar campos para asegurarse de que la red esté haciendo lo que se supone que debe hacer, sugieren los autores.

Para decirlo (vagamente) en términos de patata dulce, el éxito de una cadena de televisión no es solo su capacidad para entregar una señal clara a millones de hogares. Lo que también es importante son los detalles finos, como la forma en que el hogar de cada espectador organiza su televisor, sistema de sonido y muebles de la sala de estar para maximizar la experiencia.

Tanto en esta metáfora como en el cerebro, dijo Miller, la presencia de la red motiva a los participantes individuales a configurar su propia infraestructura para participar de manera óptima.

READ  El Telescopio Espacial James Webb destaca hermosas estrellas jóvenes en una galaxia cercana (foto)

«El acoplamiento citoeléctrico conecta la información a nivel meso y macroscópico hasta el nivel microscópico de proteínas que son la base molecular de la memoria», escriben los autores en el artículo.

El artículo expone la lógica que inspira el acoplamiento citoeléctrico. “Ofrecemos una hipótesis que cualquiera puede probar”, dijo Miller.

Fondos: El apoyo a la investigación provino de Investigación e Innovación del Reino Unido (UKRI), la Oficina de Investigación Naval de EE. UU., la Fundación JPB y el Instituto Picower para el Aprendizaje y la Memoria.

Sobre esta noticia de investigación en neurociencia

Autor: David Orenstein
Fuente: Instituto Picower para el Aprendizaje y la Memoria
Contactar: David Orenstein – Instituto Picower para el Aprendizaje y la Memoria
Imagen: La imagen está acreditada a Neuroscience News.

Investigacion original: Acceso libre.
«Acoplamiento citoeléctrico: los campos eléctricos esculpen la actividad neuronal y «sintonizan» la infraestructura cerebral” por Earl K. Miller et al. Avances en Neurobiología


Abstracto

Acoplamiento citoeléctrico: los campos eléctricos esculpen la actividad neuronal y «sintonizan» la infraestructura cerebral

Proponemos y presentamos evidencia convergente para la hipótesis del acoplamiento citoeléctrico: los campos eléctricos generados por las neuronas son causales hasta el nivel del citoesqueleto.

Esto podría lograrse mediante electrodifusión y mecanotransducción e intercambios entre energía eléctrica, potencial y química. El acoplamiento efáptico organiza la actividad neuronal, formando ensamblajes neuronales a nivel macro.

Esta información se propaga a nivel de las neuronas, lo que afecta el dopaje y desciende hasta el nivel molecular para estabilizar el citoesqueleto, «sintonizándolo» para procesar la información de manera más eficiente.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Algunas de las estrellas más antiguas del Universo acaban de ser descubiertas orbitando la Vía Láctea: ScienceAlert

Published

on

Algunas de las estrellas más antiguas del Universo acaban de ser descubiertas orbitando la Vía Láctea: ScienceAlert

Mencione la Vía Láctea y la mayoría de la gente visualizará una enorme galaxia espiral de miles de millones de años. Se cree que es una galaxia que tomó forma miles de millones de años después del Big Bang. Los estudios realizados por astrónomos han revelado que a nuestro alrededor hay ecos de épocas anteriores.

Un equipo de astrónomos del MIT encontró tres estrellas antiguas que orbitan alrededor del halo de la Vía Láctea. El equipo cree que estas estrellas se formaron cuando el Universo tenía aproximadamente mil millones de años y alguna vez fueron parte de una galaxia más pequeña que fue consumida por la Vía Láctea.

La Vía Láctea es nuestra galaxia natal, dentro de la cual se encuentra todo nuestro sistema solar y alrededor de 400 mil millones de estrellas más. Mide 100.000 años luz de lado a lado y alberga casi todo lo que podemos ver en el cielo a simple vista.

Los astrónomos del MIT han descubierto tres de las estrellas más antiguas del universo y viven en nuestro propio vecindario galáctico. Las estrellas se encuentran en el «halo» de la Vía Láctea, la nube de estrellas que envuelve el disco galáctico principal, y parecen haberse formado hace entre 12 y 13 mil millones de años, cuando estaban tomando forma las primeras galaxias. (Serge Brunier/NASA)

En una noche clara y oscura, podemos ver la luz combinada de todas las estrellas de la galaxia formando una maravillosa banda de luz nebulosa que cruza el cielo de horizonte a horizonte. Si pudieras ver la galaxia desde fuera, su forma ancha parecería dos huevos fritos pegados espalda con espalda.

La historia del descubrimiento nos lleva al año 2022 durante un nuevo curso de arqueología estelar observacional en el MIoT, cuando los estudiantes aprendían a analizar estrellas antiguas.

Luego los aplicaron a estrellas que aún no han sido analizadas. Trabajaron con datos del telescopio Magellan-Clay de 6,5 m en el Observatorio Las Campanas y buscaban estrellas que se formaron poco después del Big Bang.

READ  Daily Telescope: una vista de nuestra estrella cuando la Tierra alcanza el perihelio

En este momento de la evolución del Universo, había principalmente hidrógeno y helio con trazas de estroncio y bario. Entonces el equipo buscó estrellas cuyos espectros indicaran estos elementos.

La fabricación de precisión es el corazón del Telescopio Gigante de Magallanes. La superficie de cada espejo debe pulirse hasta una fracción de la longitud de onda de la luz. (Organización del Telescopio Gigante de Magallanes)

Se centraron en solo tres estrellas observadas en 2013 y 2014, pero no habían sido analizadas antes y, por lo tanto, constituyeron un excelente estudio para los estudiantes.

Al final de su análisis (que tomó varios cientos de horas en la computadora), el equipo identificó que las estrellas tenían niveles muy bajos de estroncio y bario, como se esperaba si fueran estrellas antiguas.

Se estima que las estrellas estudiadas se formaron hace entre 12 y 13 mil millones de años. Lo que no estaba claro era el origen de las estrellas. ¿Cómo llegaron a la Vía Láctea si era relativamente nueva y joven?

El equipo decidió analizar las características orbitales de las estrellas para ver cómo se movían. Todas las estrellas estaban en diferentes lugares del halo de la Vía Láctea y todas estarían ubicadas a unos 30.000 años luz de la Tierra.

Comparando el movimiento con los datos del satélite astrométrico Gaia, descubrieron que las estrellas se movían en dirección opuesta a la mayoría de las otras estrellas de la Vía Láctea. A esto lo llamamos movimiento retrógrado y sugiere que las estrellas vinieron de otro lugar y no se formaron con la Vía Láctea.

Las firmas químicas de las estrellas, combinadas con su movimiento, dan gran credibilidad a la probabilidad de que estas antiguas estrellas no se hayan originado en la Vía Láctea.

Ahora que han desarrollado su método para identificar estrellas antiguas, los estudiantes quieren ampliar su búsqueda para ver si se pueden localizar otras.

READ  El rover lunar VIPER de la NASA aterrizará cerca del cráter Nobile en el Polo Sur lunar

Sin embargo, con 400 mil millones de estrellas en la Vía Láctea, aún queda por encontrar un método un poco más eficiente.

Este artículo fue publicado originalmente por El universo hoy. Léelo artículo original.

Continue Reading

Horoscopo

La enorme mancha solar que provocó auroras generalizadas en la Tierra ahora apunta a Marte

Published

on

La enorme mancha solar que provocó auroras generalizadas en la Tierra ahora apunta a Marte

Sí, la bestial mancha solar AR3664 vuelve a ser noticia.

Aunque la mancha solar ha desaparecido de nuestro campo de visión, sigue siendo un punto caliente, ya que provocó su llamarada solar más fuerte hasta la fecha el martes 14 de mayo. Cualquier explosión de plasma solar y campo magnético, conocidas como eyecciones de masa coronal, de AR3664 ahora se dirigirá lejos de la Tierra, pero los científicos dicen que hay otro planeta que podría experimentar los impactos de esta enorme mancha solar: Marte.

Continue Reading

Horoscopo

China lanza un nuevo y misterioso satélite Shiyan (vídeo)

Published

on

China lanza un nuevo y misterioso satélite Shiyan (vídeo)

China lanzó este fin de semana el último de su serie secreta de satélites Shiyan.

Un cohete Larga Marcha 4C despegó del Centro de Lanzamiento de Satélites de Jiuquan en el desierto de Gobi, en el noroeste de China, a las 7:43 p. m. EDT del 11 de mayo (11:43 p. m. GMT, o 7:43 a. m. de Beijing, 12 de mayo). autoridades chinas reveló la carga útil de la misión será Shiyan-23 una vez que el lanzamiento se declare exitoso.

Continue Reading

Trending