Connect with us

Horoscopo

Construya dispositivos electrónicos que puedan sobrevivir bajo la capa de hielo de Groenlandia.

Published

on

Agrandar / Los sensores, la electrónica de apoyo y un transmisor están todos encerrados en una carcasa hermética a la presión.

Michael Prior-Jones

Gracias al programa del satélite GRACE, los investigadores han demostrado que la capa de hielo de Groenlandia está perdiendo 280 mil millones de toneladas de hielo cada año, el equivalente a casi 1,5 millones de piscinas olímpicas. Para glaciares como los de Groenlandia y la Antártida, la mayor parte de este agua de deshielo termina en el océano, con consecuencias ya notables para el aumento del nivel del mar.

Las mejores predicciones del aumento futuro del nivel del mar requerirán que comprendamos qué está haciendo el agua de deshielo en el interior, y especialmente debajo de los glaciares. Pero para hacer esto, los investigadores deben actuar por un glaciar. A principios de este mes, ingeniero eléctrico y glaciólogo Dr. Michael Prior-Jones y sus colaboradores en Reino Unido, Suiza, Dinamarca y Canadá publicado su versión rediseñada de una sonda subglacial inalámbrica –el Cryoegg—Ayudar a estudiar la «plomería» interior de los glaciares.

Obstáculos glaciales

los agua derretida que fluye a través y debajo de los glaciares pueden terminar en pequeñas bolsas, grandes lagos o ríos de rápido movimiento, cada uno de los cuales desestabiliza el glaciar suprayacente en diversos grados. Los lagos subglaciales pueden hacer que se muevan secciones enteras del glaciar. En contraste, los ríos subglaciales canalizan el agua de deshielo hacia un área más pequeña, lo que resulta en un movimiento de glaciares comparativamente menor.

Los investigadores utilizaron señales de radio e imágenes de satélite para mapear el tamaño de redes hidrologicas y los lagos debajo de los glaciares. Pero no se sabe mucho sobre la velocidad a la que se mueve esta agua o el tiempo que pasa serpenteando en su camino hacia el océano. La única forma de responder a estas preguntas es tomando medidas debajo del glaciar.

READ  Aminoácidos encontrados en muestras de asteroides recolectadas por la sonda japonesa Hayabusa2

Los glaciares, y especialmente las grietas glaciales y los orificios de drenaje, llamados molinos, son extremadamente peligrosos para explorar en persona. El agua derretida se vierte en los molinos a una velocidad de hasta 4 toneladas métricas por segundo y el hielo se mueve con frecuencia. Los glaciólogos han probado configuraciones experimentales en las cimas de los glaciares, así como sondas colgando a través de perforaciones en la capa de hielo. Pero estos generalmente solo duran unas pocas semanas antes de que los glaciares se muevan lo suficiente como para romper o enredar irremediablemente los cables e inutilizar la instalación.

La solución fue diseñar sondas inalámbricas que se liberan en la red subglacial. Sin embargo, rápidamente quedó claro que los investigadores no pueden confiar en la recuperación de estas mediciones cuando las sondas abandonan el glaciar; casi siempre se atascan. Una serie de experimentos, incluido uno con una flotilla de patos de goma publicado por la NASA, ha demostrado que las cosas que entran en los glaciares rara vez se revisan.

Esto inspiró un puñado de dispositivos que transmiten medidas en tiempo real. por hielo a medida que la sonda se mueve debajo del glaciar. El último de ellos, el Cryoegg, ha estado en desarrollo durante casi 10 años, y Prior-Jones y el equipo lo diseñaron específicamente para mediciones a través de hielo profundo.

Profundidades de congelación

El diseño es una sonda del tamaño de un pomelo impermeable y resistente a la presión que ahora es capaz de enviar mediciones a través de 1,3 km de hielo. Está alimentado por una batería que debería permitirle enviar lecturas cada dos horas hasta por un año. Los componentes incluyen tecnología de enlace de radio que se ha reutilizado de medidores de agua y gas en Francia y una carcasa resistente a la presión mecanizada a medida.

El Cryoegg está equipado para responder a tres preguntas: ¿Cuál es la temperatura? Cual es la presion? ¿Y cuánto tiempo ha estado fluyendo el agua circundante a través y debajo del glaciar?

READ  ¿Cómo sería un planeta similar a la Tierra en Alpha Centauri?

La edad del agua se puede estimar por su conductividad eléctrica. El agua de deshielo suave es casi pura, pero a medida que fluye a través del glaciar, y especialmente cuando entra en contacto con rocas y sedimentos, recoge minerales y sólidos disueltos. Estas sustancias, a su vez, modifican la conductividad eléctrica del agua.

En combinación, estas medidas dan pistas sobre la tasa de drenaje del glaciar. Por ejemplo, las presiones más bajas indican que el agua tiene una salida fácil, mientras que las presiones más altas sugieren que el agua está atrapada. Además, cuanto mayor sea la conductividad, probablemente más tiempo permanezca el agua bajo el glaciar.

“Actualmente, hay tan pocas mediciones bajo el hielo que los modeladores tienen muy pocos datos sobre los efectos de los cambios en la estructura del sistema de drenaje”, dijo la Dra. Liz Bagshaw, asociada de Prior-Jones. «Somos parte de un esfuerzo mucho mayor para las personas que están cuantificando todos estos procesos diferentes para que encajen en los modelos más grandes de la capa de hielo».

Espere en linea

El Cryoegg aún no se ha lanzado para una prueba completa, pero los investigadores lo han probado (sujeto a una correa) bajo glaciares en Groenlandia y los Alpes suizos. Como el dispositivo ha pasado todas sus pruebas hasta ahora, el equipo planea lanzar el primer Cryoegg en el North East Greenland Ice Stream (NEGIS), uno de los glaciares más rápidos conocidos. Esperan que las mediciones de Cryoegg les den una mejor comprensión de por qué estos glaciares se mueven tan rápido.

READ  El lanzamiento del vuelo de prueba de Starliner no se remonta hasta el 2 de abril - Spaceflight Now

También están apretando el sello del Cryoegg y extendiendo el alcance de la señal hasta 2,5 km de hielo, la profundidad media de la capa de hielo en el centro de Groenlandia. También en desarrollo: ampliación del rango entre el Cryoegg y el receptor de radio, no solo en términos de profundidad sino también de distancia de superficie.

Una de las mayores limitaciones en esta etapa es el acceso a los pozos, que generalmente son financiados e implementados por colaboraciones internacionales. Si bien sería ideal eventualmente desplegar Cryoeggs en todo el mundo, hay una larga fila de otros investigadores esperando usar los pozos disponibles para sus propios estudios. Mientras tanto, la primera prueba será para ver qué datos se devuelven del viaje inaugural del Cryoegg.

«La glaciología es en cierto modo equivalente a las sondas espaciales porque simplemente enviamos esta pequeña nave a un entorno incierto y esperamos obtener datos de ella antes de que se pierda», dijo Prior-Jones.

Revista de Glaciología, 2021. DOI: 10.1017 / jogging.2021.16 (Acerca de los DOI).

KED Coan es un periodista independiente que cubre historias sobre el clima y el medio ambiente en Ars Technica. Tiene un doctorado. en química y biología química.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

El Boeing Starliner llega a la plataforma de lanzamiento para el primer vuelo de astronautas el 6 de mayo (fotos)

Published

on

El Boeing Starliner llega a la plataforma de lanzamiento para el primer vuelo de astronautas el 6 de mayo (fotos)

CABO CAÑAVERAL — ¡Que Rocket Force esté contigo!

Un cohete Atlas V se desplegó en su plataforma de lanzamiento el sábado 4 de mayo, también Día de Star Wars, en la estación espacial de Cabo Cañaveral, días antes de su histórica primera misión con astronautas. En lo alto del propulsor de United Launch Alliance estaba la nave espacial Starliner de Boeing, que también realizará su primer vuelo con humanos a bordo después de su lanzamiento no antes del lunes 6 de mayo.

Continue Reading

Horoscopo

Probablemente nos equivoquemos nuevamente sobre el T.Rex, según un nuevo estudio: ScienceAlert

Published

on

Probablemente nos equivoquemos nuevamente sobre el T.Rex, según un nuevo estudio: ScienceAlert

¿Estúpido idiota o músculo inteligente? El debate ha terminado Tirano saurio Rex La inteligencia continúa, con un nuevo artículo que se basa en la teoría original de que estos temibles gigantes no eran tan brillantes.

En 2023, un controvertido estudio sugirió que uno de los dinosaurios más infames del mundo, tirano-saurio RexPodría ser tan inteligente como los simios modernos, lo que provocó mucho escepticismo entre otros investigadores que ahora han presentado sus resultados.

«La posibilidad de que Tirano saurio Rex podría haber sido tan inteligente como un babuino es fascinante y aterrador, con el potencial de reinventar nuestra visión del pasado», explicar Darren Naish, paleontólogo de la Universidad de Southampton. «Pero nuestro estudio muestra cómo todos los datos que tenemos van en contra de esta idea».

Dirigido por el zoólogo Kai Caspar de Universidad Heinrich Heine en AlemaniaEl nuevo estudio encontró que las mediciones del tamaño del cerebro en el estudio de 2023 eran inexactas, lo que inflaba las estimaciones sobre cuántas neuronas los reptiles prehistóricos podían caber en sus cabezas, particularmente en el prosencéfalo.

Esta sobreestimación se debió principalmente al hecho de que el artículo original suponía Tirano saurio Rex El cerebro ocupaba la mayor parte del espacio endocraneal, lo que no ocurre en la mayoría de los dinosaurios, Naish explica en un artículo de blog.

Relación entre cerebro y masa corporal en vertebrados terrestres. los dinosaurios aman Tirano saurio Rex Tienen una proporción de tamaño cerebro-cuerpo similar a la de los reptiles vivos. (Gutiérrez-Ibáñez)

Además, Caspar y sus colegas sostienen que el número de neuronas no rastrea de manera confiable la inteligencia. Tomemos como ejemplo a los pájaros: durante mucho tiempo se pensó que el tamaño pequeño de su cabeza significaba que tenían menos neuronas y, por lo tanto, no eran muy inteligentes.

READ  ¿Cómo sería un planeta similar a la Tierra en Alpha Centauri?

Pero desde entonces hemos aprendido que aves como los cuervos pueden superar a los primates en ciertas tareas cognitivas a pesar de tener cabezas más pequeñas, lo que lleva a la conclusión de que otros factores además del tamaño del cerebro, como los patrones de conectividad, desempeñan un papel muy importante en la determinación de la inteligencia.

«Argumentamos que no es una buena práctica predecir la inteligencia en especies extintas cuando lo único que tenemos es la cantidad de neuronas reconstruidas a partir de endocasts». dicho Casper.

En cambio, se necesitan múltiples fuentes de datos, desde anatomía hasta pistas sobre el comportamiento y más comparaciones con los animales modernos, para hacer estimaciones más precisas sobre las inteligencias prehistóricas.

«Se necesita una comprensión significativamente mejorada de la relación entre el número de neuronas y otras variables biológicas, particularmente el rendimiento cognitivo, en los animales existentes» antes de que puedan ocurrir predicciones más precisas, dijo el equipo. argumenta en su artículo.

Árbol de relaciones entre reptiles, dinosaurios y aves así como su complejidad cerebral
Las relaciones entre grupos de reptiles, así como una representación de su complejidad cerebral, muestran que los cerebros de los tiranosaurios no son tan diferentes de los de los crocodilomorfos. (Caspar et al., El archivo anatómico2024).

Entonces, ¿dónde deja eso a la Tirano saurio Rex?

La evidencia conductual reciente sugiere que los famosos reptiles prehistóricos pueden haber sido sorprendentemente sociales, cazar en manadaspero esto no es suficiente para sugerir inteligencia a nivel de primates.

«Se parecían más a cocodrilos gigantes e inteligentes, y eso es igualmente fascinante». concluye Naish.

Esta investigación fue publicada en El archivo anatómico.

Continue Reading

Horoscopo

El brillo de un exoplaneta podría provenir de la luz de las estrellas que se refleja en el hierro líquido

Published

on

El brillo de un exoplaneta podría provenir de la luz de las estrellas que se refleja en el hierro líquido
Agrandar / Impresión artística de una gloria en el exoplaneta WASP-76b.

¿Existen arcoíris en mundos distantes? Muchos fenómenos que ocurren en la Tierra, como la lluvia, los huracanes y la aurora boreal, también ocurren en otros planetas de nuestro sistema solar si las condiciones son adecuadas. Ahora tenemos evidencia desde fuera de nuestro sistema solar de que un exoplaneta particularmente extraño podría incluso mostrar algo parecido a un arco iris.

Un fenómeno llamado «gloria», que aparece en el cielo como un halo de colores, se produce cuando la luz incide en nubes formadas por una sustancia homogénea en forma de gotas esféricas. Esta podría ser la explicación de un misterio relacionado con las observaciones del exoplaneta WASP-76B. También se observó que este planeta, un gigante gaseoso en llamas que experimenta lluvias de hierro fundido, tiene más luz en su terminador oriental (una línea utilizada para separar el lado diurno del lado nocturno) que en su terminador occidental. ¿Por qué había más luz en un lado del planeta?

Después de observarla con el telescopio espacial CHEOPS y luego combinarla con observaciones anteriores del Hubble, Spitzer y TESS, un equipo de investigadores de la ESA y la Universidad de Berna en Suiza cree ahora que la razón más probable de esta luz adicional es una gloria. .

Mira la luz

Durante tres años, CHEOPS llevó a cabo 23 observaciones de WASP-76B en luz visible e infrarroja. Estos incluyen curvas de fasetránsitos y eclipses secundarios. Las curvas de fase son observaciones continuas que siguen la revolución completa de un planeta y muestran cambios en su fase o en la parte de su lado iluminado que mira al telescopio. El telescopio puede ver este lado más o menos a medida que el planeta orbita su estrella. Las curvas de fase pueden determinar el cambio en el brillo total del planeta y la estrella a medida que el planeta gira.

READ  Biólogo reveló la causa natural de la mutación del coronavirus: Compañía: Rusia: Lenta.ru

Los eclipses secundarios ocurren cuando un planeta pasa detrás de su estrella anfitriona y es eclipsado por ella. La luz vista durante un eclipse de este tipo se puede comparar con la luz total antes y después de la ocultación para darnos una idea de la luz reflejada por el planeta. Los Júpiter calientes como WASP-76B se observan comúnmente durante los eclipses secundarios.

Las observaciones de las curvas de fase pueden continuar a medida que el planeta eclipsa a su estrella. Mientras observaba la curva de fase de WASP-76B, CHEOPS vio un exceso de luz previa al eclipse en su lado nocturno. Esto también se había observado en la curva de fase TESS y en las observaciones del eclipse secundario realizadas anteriormente.

¿El fin del arcoíris?

Una ventaja de WASP-76b es que es un Júpiter ultracaliente, por lo que al menos su lado diurno no presenta las nubes y nieblas que a menudo oscurecen las atmósferas de los Júpiter calientes y fríos. Esto hace que las emisiones al aire sean mucho más fáciles de detectar. Que ya habíamos observado una asimetría en el contenido de hierro entre los terminadores del lado diurno y del lado nocturno, descubierta en un estudio previo, hizo que el planeta fuera particularmente intrigante. No había mucho gas de hierro en la atmósfera superior de la rama diurna en comparación con la de la rama nocturna. Probablemente esto se deba a que llueve hierro en el lado diurno de WASP-76b, que luego se condensa en nubes de hierro en el lado nocturno.

Las observaciones de Hubble sugieren que la inversión térmica (cuando el aire cerca de la superficie de un planeta comienza a enfriarse) estaba ocurriendo en el lado nocturno. El enfriamiento en ese lado causaría la condensación del hierro que previamente se había condensado en nubes, llovió en el lado del día y luego se evaporó por el intenso calor. Entonces, las gotas de hierro líquido pueden formar nubes.

READ  Hubble captura las rugientes tormentas del gigante y la luna volcánica Io

Estas nubes son fundamentales ya que la luz de la estrella anfitriona, reflejada por estas gotas en estas nubes, puede crear un efecto de gloria.

«Para explicar la observación con el efecto Gloria se necesitarían gotas esféricas de aerosoles y nubes altamente reflectantes y de forma esférica sobre el hemisferio oriental del planeta», dijeron los investigadores en un artículo publicado recientemente en Astronomy & Astrophysics.

Glorias ya se han visto fuera de la Tierra. También se sabe que se forman en nubes de Venus. Al igual que WASP-76b, en Venus se observó más luz previa al eclipse. Entonces, aunque la gloria es casi definitiva para el exoplaneta, futuras observaciones con un telescopio más potente podrían ayudar a determinar qué tan similar es el fenómeno de WASP-76 al de WASP-76b. Venus. Si coinciden, será la primera gloria jamás observada en un exoplaneta.

Si futuras investigaciones encuentran una manera precisa de determinar si realmente es una gloria, estos fenómenos podrían decirnos más sobre la composición atmosférica de los exoplanetas, en función de los tipos de elementos o moléculas sobre los que se refleja la luz. Incluso podrían delatar la presencia de agua, lo que podría significar habitabilidad. Aunque la supuesta gloria de WASP-76b no se ha demostrado definitivamente, es todo menos un arco iris en la oscuridad.

Astronomía y astrofísica, 2024. DOI: 10.1051/0004-6361/202348270

Continue Reading

Trending