Connect with us

Horoscopo

Las instantáneas de la conmutación súper rápida en la electrónica cuántica podrían conducir a dispositivos informáticos más rápidos

Published

on

Un equipo de investigadores ha creado un nuevo método para capturar movimientos atómicos ultrarrápidos dentro de pequeños interruptores que controlan el flujo de corriente en circuitos electrónicos. En la foto, Aditya Sood (izquierda) y Aaron Lindenberg (derecha). Crédito: Greg Stewart / SLAC National Accelerator Laboratory

Los científicos toman las primeras instantáneas de la conmutación ultrarrápida en un dispositivo electrónico cuántico

Descubren un estado de corta duración que podría conducir a dispositivos informáticos más rápidos y con mayor eficiencia energética.

Los circuitos electrónicos que calculan y almacenan información contienen millones de pequeños interruptores que controlan el flujo de corriente eléctrica. Una mejor comprensión de cómo funcionan estos pequeños interruptores podría ayudar a los investigadores a superar los límites de la informática moderna.

Los científicos ahora han tomado las primeras instantáneas de los átomos que se mueven dentro de uno de estos interruptores cuando se enciende y apaga. Entre otras cosas, descubrieron un estado de corta duración en el conmutador que algún día podría explotarse para dispositivos informáticos más rápidos y con mayor eficiencia energética.

El equipo de investigación del Laboratorio Nacional Acelerador SLAC en el Departamento de Energía, la Universidad de Stanford, Hewlett Packard Labs, la Universidad de Penn State y la Universidad de Purdue describió su trabajo en un artículo publicado en La ciencia hoy (15 de julio de 2021).

“Esta investigación es un gran avance en tecnología y ciencia ultrarrápidas”, dice Xijie Wang, científico y colaborador de SLAC. «Esta es la primera vez que los investigadores han utilizado la difracción de electrones ultrarrápida, que puede detectar pequeños movimientos atómicos en un material mediante la dispersión de un poderoso haz de electrones en una muestra, para observar un dispositivo electrónico mientras funciona».

Dispositivo electrónico cuántico de conmutación ultrarrápida

El equipo usó pulsos eléctricos, que se muestran aquí en azul, para encender y apagar sus interruptores personalizados varias veces. Calcularon estos pulsos eléctricos para que llegaran justo antes de los pulsos de electrones producidos por la fuente de difracción de electrones ultrarrápida de SLAC, MeV-UED, que capturó los movimientos atómicos que ocurren dentro de estos interruptores cuando se encienden y apagan. Crédito: Greg Stewart / SLAC National Accelerator Laboratory

Captura el ciclo

Para este experimento, el equipo diseñó interruptores electrónicos en miniatura hechos a medida hechos de dióxido de vanadio, un material cuántico prototípico cuya capacidad para pasar de un estado aislante a un estado conductor de electricidad cerca de la temperatura ambiente podría aprovecharse como un interruptor para cálculos futuros. El material también tiene aplicaciones en la computación inspirada en el cerebro debido a su capacidad para crear impulsos electrónicos que imitan los impulsos neuronales desencadenados en el cerebro humano.

READ  Metano en las plumas de Encelado, la luna de Saturno: ¿posibles signos de vida?

Los investigadores utilizaron pulsos eléctricos para alternar estos interruptores entre estados aislantes y conductores mientras tomaban instantáneas que mostraban cambios sutiles en la disposición de sus átomos en mil millonésimas de segundo. Estas instantáneas, tomadas con la cámara de difracción de electrones ultrarrápida de SLAC, MeV-UED, se encadenaron para crear una película molecular de movimientos atómicos.


El investigador principal Aditya Sood analiza una nueva investigación que podría conducir a una mejor comprensión de cómo funcionan los interruptores diminutos dentro de los circuitos electrónicos. Crédito: Olivier Bonin / Laboratorio Nacional de Aceleradores SLAC

«Esta cámara ultrarrápida puede realmente mirar dentro de un material y tomar instantáneas de cómo se mueven sus átomos en respuesta a un pulso de excitación eléctrica», dijo el colaborador Aaron Lindenberg, investigador del Instituto Stanford de Ciencias de Materiales y Energía (SIMES) en SLAC. y profesor en el Departamento de Ciencia e Ingeniería de Materiales de la Universidad de Stanford. «Al mismo tiempo, también mide cómo cambian las propiedades electrónicas de este material con el tiempo».

Con esta cámara, el equipo descubrió un nuevo estado intermedio dentro del material. Se crea cuando el material responde a un impulso eléctrico cambiando de un estado aislante a un estado conductor.

«Los estados aislantes y conductores tienen arreglos atómicos ligeramente diferentes, y generalmente se necesita energía para cambiar entre ellos», dijo Xiaozhe Shen, científico y colaborador de SLAC. «Pero cuando la transición tiene lugar a través de este estado intermedio, el cambio puede tener lugar sin ningún cambio en la disposición atómica».

Abre una ventana al movimiento atómico

Aunque el estado intermedio solo existe durante unas millonésimas de segundo, está estabilizado por defectos en el material.

READ  Científicos encuentran raro fósil tardígrado atrapado en ámbar de 16 millones de años: NPR

Como seguimiento de esta investigación, el equipo está estudiando cómo diseñar estos defectos en los materiales para hacer que este nuevo estado sea más estable y más duradero. Esto les permitirá fabricar dispositivos en los que la conmutación electrónica pueda ocurrir sin ningún movimiento atómico, lo que funcionaría más rápido y requeriría menos energía.

“Los resultados demuestran la solidez de la conmutación eléctrica durante millones de ciclos e identifican posibles límites a las velocidades de conmutación de dichos dispositivos”, dijo Shriram Ramanathan, asociado y profesor de Purdue. «La investigación proporciona datos invaluables sobre los fenómenos microscópicos que ocurren durante las operaciones del dispositivo, lo cual es crucial para el diseño de modelos de circuitos en el futuro».

La investigación también ofrece una nueva forma de sintetizar materiales que no existen en condiciones naturales, lo que permite a los científicos observarlos en escalas de tiempo ultrarrápidas y luego potencialmente ajustar sus propiedades.

«Este método nos brinda una nueva forma de ver los dispositivos mientras funcionan, abriendo una ventana para ver cómo se mueven los átomos», dijo el autor principal e investigador de SIMES, Aditya Sood. “Es emocionante reunir ideas de los campos tradicionalmente distintos de la ingeniería eléctrica y la ciencia de alta velocidad. Nuestro enfoque permitirá la creación de dispositivos electrónicos de próxima generación capaces de satisfacer las crecientes necesidades mundiales de computación inteligente y con uso intensivo de datos.

MeV-UED es un instrumento de la instalación para usuarios de LCLS, operado por SLAC en nombre de la Oficina de Ciencias del DOE, que financió esta investigación.

SLAC es un laboratorio dinámico de múltiples programas que explora cómo funciona el universo a las escalas más grandes, más pequeñas y más rápidas e inventa herramientas poderosas utilizadas por científicos de todo el mundo. Con investigaciones que abarcan la física de partículas, la astrofísica y la cosmología, los materiales, la química, las ciencias biológicas y energéticas y la computación científica, ayudamos a resolver problemas del mundo real y promover los intereses de la ciencia.

READ  Webb y Hubble capturan imagen espectacular de Phantom Galaxy Core

SLAC es administrado por la Universidad de Stanford para la Oficina de Ciencias del Departamento de Energía de EE. UU. La Oficina de Ciencias es el mayor patrocinador de la investigación básica en ciencias físicas en los Estados Unidos y trabaja para abordar algunos de los desafíos más urgentes de nuestro tiempo.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada.

Horoscopo

NASA, la misión de astronautas SpaceX Crew-5 llega a la Estación Espacial Internacional

Published

on

Misión SpaceX Crew-5 de la NASA llegó a la Estación Espacial Internacional el jueves por la tarde.

La agencia dijo que la nave espacial Dragon Endurance atracó en el resort poco después de las 5 p.m. ET.

Después de que Dragon se conectara al módulo Harmony, la escotilla se abrió a las 6:49 p. m. ET, luego de las comprobaciones de fugas y la presurización estándar.

Los astronautas de la NASA Nicole Mann y Josh Cassada, el astronauta de la Agencia de Exploración Aeroespacial de Japón Koichi Wakata y la cosmonauta de Roscosmos Anna Kikina se han unido a la tripulación de la Expedición 68.

LA NASA, LA MISIÓN SPACEX CREW-5 SE LANZA A LA ESTACIÓN ESPACIAL

Los astronautas de la NASA Nicole Mann y Josh Cassada, el astronauta de la JAXA (Agencia de Exploración Aeroespacial de Japón) Koichi Wakata y la cosmonauta de Roscosmos Anna Kikina llegaron a la Estación Espacial Internacional el jueves 6 de octubre. (Crédito: NASA TV/Fox News)

Durante un breve período, el número de tripulaciones del laboratorio en órbita aumentará a 11 personas hasta la salida de Crew-4.

Esta salida debería tener lugar en aproximadamente una semana.

astronauta de la NASA Nicole Mann

La astronauta de la NASA Nicole Mann ingresa a la estación espacial menos de dos horas después de atracar la nave de la tripulación Dragon Endurance en el puerto delantero del módulo Harmony. (Crédito: televisión de la NASA)

SpaceX y el cohete Falcon 9 de Endurance lanzado desde el Complejo de Lanzamiento 39A en el Centro Espacial Kennedy con sede en Florida al mediodía ET.

READ  La NASA comparte una vista impresionante de cruzar la ISS frente al sol

PONGA FOX BUSINESS EN EL CAMINO HACIENDO CLIC AQUÍ

El viaje a la estación espacial duró 29 horas y la tripulación tiene programada una estadía de hasta seis meses antes de regresar a la Tierra el próximo año.

Lanzamiento de SpaceX Crew-5

La nave de la tripulación SpaceX Endurance sobre el cohete Falcon 9 despega del Centro Espacial Kennedy en Florida llevando a cuatro miembros de la Tripulación-5 a la estación espacial. (Crédito: NASA/Joel Kowsky)

«Fue un lanzamiento excepcional», dijo Joel Montalbano, gerente del programa de la Estación Espacial Internacional en el Centro Espacial Johnson. «Simplemente un día fantástico para estar en un vuelo espacial tripulado».

Crew-5 marca el primer vuelo espacial para Mann, Cassada y Kikina, y el quinto para Wakata.

HAGA CLIC AQUÍ PARA SABER MÁS SOBRE FOX BUSINESS

Mann se convirtió en la primera mujer nativa americana en el espacio.

Era la primera vez en 20 años que un ruso hacía autostop desde el Centro Espacial Kennedy.

Continue Reading

Horoscopo

Space Machines Company se asocia con Anywaves

Published

on

Antena de banda S Anywaves. Crédito: Anywaves

Edimburgo, 6 de octubre de 2022. – La empresa australiana de logística y transporte espacial Space Machines Company (SMC) se asoció con el fabricante de equipos de antena Anywaves para respaldar su primera misión en el segundo trimestre de 2023, dijo SMC.

SMC eligió a SpaceX como proveedor de lanzamiento para su misión Roll Out. Mientras tanto, SMC probará la capacidad de su vehículo de transferencia orbital (OTV) Optimus de 270 kg. La OTV proporcionará servicios de logística en el espacio y mejorará las capacidades de proveedor de servicios de última milla de la empresa. La demostración también será una oportunidad para que SMC obtenga soluciones de calificación y prueba de vuelo para varias cargas útiles y clientes.

El Optimus OTV es una de las naves espaciales comerciales más grandes diseñadas, fabricadas y ensambladas en Australia, según SMC.

Las antenas de telemetría, seguimiento y control (TT&C) de banda S de Anywaves permitirán a SMC proporcionar comunicaciones con estaciones terrestres. Las antenas aseguran que la conexión se mantenga incluso durante las fases críticas de la misión. También protegen el enlace descendente de telemetría esencial al tiempo que proporcionan autoridad de mando sobre la nave espacial.

READ  Perseverance Mars rover de la NASA se enfrenta a un desconcertante acertijo de muestreo
Continue Reading

Horoscopo

Los valles antiguos pueden mostrar cómo los casquetes polares responderán al cambio climático: NPR

Published

on

Una vista aérea de los icebergs y la capa de hielo cerca de Pituffik, Groenlandia.

Kerem Yucel/AFP vía Getty Images


ocultar título

alternar título

Kerem Yucel/AFP vía Getty Images

Una vista aérea de los icebergs y la capa de hielo cerca de Pituffik, Groenlandia.

Kerem Yucel/AFP vía Getty Images

Durante las edades de hielo de la Tierra, gran parte de América del Norte y el norte de Europa estaban cubiertos por enormes glaciares.

Hace unos 20.000 años, estos casquetes polares comenzaron a derretirse rápidamente y el agua resultante tuvo que ir a alguna parte, a menudo debajo de los glaciares. Con el tiempo, se formaron enormes valles bajo el hielo para drenar el agua del hielo.

Un nuevo estudio sobre cómo se derritieron los glaciares después de la última edad de hielo podría ayudar a los investigadores a comprender mejor cómo podrían reaccionar los casquetes polares actuales al calor extremo resultante del cambio climático, dicen los autores del estudio.

El estudio publicado esta semana en Revisiones de Ciencias del Cuaternarioayudó a aclarar cómo, y con qué rapidez, se formaron estos canales.

«Nuestros resultados muestran, por primera vez, que el mecanismo más importante es probablemente el derretimiento del verano en la superficie del hielo, que llega al lecho a través de grietas o conductos similares a chimeneas y luego fluye bajo la presión de la capa de hielo para cortar el hielo». canales”, dijo Kelly Hogan, coautora y geofísica del British Antarctic Survey.

Investigadores han descubierto miles de valles bajo el Mar del Norte

Al analizar los datos de reflexión sísmica en 3D recopilados originalmente como parte de las evaluaciones de riesgo para las compañías de petróleo y gas, los investigadores han descubierto miles de valles en el Mar del Norte. Estos valles, algunos de los cuales datan de hace millones de años, ahora están profundamente enterrados bajo el lodo del lecho marino.

READ  Webb y Hubble capturan imagen espectacular de Phantom Galaxy Core

Algunos de los canales eran enormes, tan grandes como 90 millas de ancho y tres millas de ancho («varias veces más grandes que el lago Ness», el grupo de investigación con sede en el Reino Unido anotó).

Un modelo digital de un canal masivo que transportaba agua de deshielo lejos de los antiguos glaciares.

James Kirkham/Servicio Antártico Británico


ocultar título

alternar título

James Kirkham/Servicio Antártico Británico

Un modelo digital de un canal masivo que transportaba agua de deshielo lejos de los antiguos glaciares.

James Kirkham/Servicio Antártico Británico

Lo que más sorprendió a los investigadores, dijeron, fue la rapidez con la que se formaron estos valles. Cuando el hielo se derritió rápidamente, el agua esculpió los valles durante cientos de años, a la velocidad del rayo, en términos geológicos.

«Este es un hallazgo emocionante», dijo el autor principal James Kirkham, investigador de BAS y la Universidad de Cambridge. «Sabemos que estos valles dramáticos se excavaron durante la agonía de los casquetes polares. Usando una combinación de técnicas de imágenes subterráneas de última generación y un modelo de computadora, aprendimos que los valles de los túneles pueden erosionarse rápidamente debajo de las capas de hielo. experimentando un calor extremo”,

Tradicionalmente se cree que los canales de agua de deshielo estabilizan los glaciares que se derriten y, por extensión, el aumento del nivel del mar, al ayudar a amortiguar el colapso de las capas de hielo, dijeron los investigadores.

Los nuevos hallazgos podrían complicar este panorama. Pero la velocidad a la que se formaron los canales significa que su inclusión en los modelos actuales podría ayudar a mejorar la precisión de las predicciones sobre el derretimiento actual de la capa de hielo, agregaron los autores.

READ  La NASA comparte una vista impresionante de cruzar la ISS frente al sol

Hoy en día, solo quedan dos grandes casquetes polares: Groenlandia y la Antártida. La velocidad a la que se derriten es probable que aumente a medida que el clima se calienta.

«La pregunta crítica ahora es si este flujo ‘adicional’ de agua de deshielo a través de los canales hará que nuestras capas de hielo fluyan más rápido o más lento hacia el mar», dijo Hogan.

Continue Reading

Trending