Connect with us

Horoscopo

Un telescopio gigante, 8 veces más grande que la Tierra, revela una vista sin precedentes de un colosal chorro cósmico

Published

on

Un telescopio gigante, 8 veces más grande que la Tierra, revela una vista sin precedentes de un colosal chorro cósmico

Los astrónomos han obtenido imágenes sin precedentes de un chorro de plasma procedente de un agujero negro supermasivo en el blazar 3C 279, que revelan patrones complejos que desafían las teorías existentes. Este esfuerzo internacional, utilizando conjuntos de radiotelescopios avanzados, descubrió filamentos helicoidales cerca de la fuente del chorro, lo que indica el papel potencial de los campos magnéticos en la formación de estos chorros. (Concepto del artista).

Un telescopio más grande que la Tierra ha descubierto una cadena de plasma en el Universo.

Utilizando una red de radiotelescopios en la Tierra y en el espacio, los astrónomos han capturado la vista más detallada jamás vista de un chorro de plasma disparo de un supermasivo agujero negro en el corazón de una galaxia lejana.

El chorro, que se origina en el corazón de un distante blazar llamado 3C 279, viaja casi a la velocidad de la luz y exhibe patrones complejos y retorcidos cerca de su fuente. Estos modelos desafían la teoría estándar utilizada durante 40 años para explicar cómo se forman y evolucionan estos chorros con el tiempo.

Una importante contribución a las observaciones fue posible gracias al Instituto Max Planck de Radioastronomía en Bonn, Alemania, donde se combinaron datos de todos los telescopios participantes para crear un telescopio virtual con un diámetro efectivo de aproximadamente 100.000 kilómetros.

Sus hallazgos fueron publicados recientemente en astronomía natural.

Blazar 3C 279 Filamentos enredados

Figura 1: Filamentos entrelazados en el blazar 3C 279. Imagen de alta resolución del chorro relativista en esta fuente observado por el programa RadioAstron. La imagen revela una estructura compleja dentro del chorro con varios filamentos a escala de pársec que forman una hélice. La red incluye datos de radiotelescopios de todo el mundo y en órbita terrestre, incluido el radiotelescopio Effelsberg de 100 m. Los datos fueron procesados ​​posteriormente en el centro correlacionador del Instituto Max Planck de Radioastronomía. Crédito: colaboración NASA/DOE/Fermi LAT; VLBA/Jorstad et al.; RadioAstron/Fuentes et al.

Descripción general de Blazars

Los blazares son las fuentes de radiación electromagnética más brillantes y poderosas del cosmos. Son una subclase de núcleos galácticos activos que comprenden galaxias con un agujero negro supermasivo central que acumula materia de un disco circundante. Alrededor del 10% de los núcleos galácticos activos, clasificados como quásares, producen chorros de plasma relativistas. Los bazares pertenecen a una pequeña fracción de los quásares en los que se pueden ver estos chorros apuntando casi directamente hacia el observador.

Recientemente, un equipo de investigadores, incluidos científicos del Instituto Max Planck de Radioastronomía (MPIfR) en Bonn, Alemania, tomó imágenes de la región más interna del chorro Blazar 3C 279 con una resolución angular sin precedentes y detectó filamentos con patrones helicoidales notablemente regulares que podrían requerir una revisión. de los modelos teóricos utilizados hasta ahora para explicar los procesos mediante los cuales se producen los chorros en las galaxias activas.

“Gracias a RadioAstron, la misión espacial para la que el radiotelescopio en órbita alcanzó distancias hasta la Luna, y a un conjunto de veintitrés radiotelescopios distribuidos por la Tierra, hemos obtenido la imagen de mayor resolución hasta la fecha del interior de un blazar, lo que nos permite «Nos permitió observar por primera vez con tanto detalle la estructura interna del chorro», explica Antonio Fuentes, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) en Granada, España, que lidera el trabajo.

Implicaciones teóricas y desafíos.

La nueva ventana al universo abierta por la misión RadioAstron ha revelado nuevos detalles sobre el chorro de plasma de 3C 279, un blazar con un agujero negro supermasivo en su corazón. El chorro tiene al menos dos filamentos de plasma retorcidos que se extienden a más de 570 años luz del centro.

“Esta es la primera vez que vemos filamentos de este tipo tan cerca del origen del chorro y nos dicen más sobre cómo el agujero negro da forma al plasma. El chorro interior también fue observado por otros dos telescopios, GMVA y EHT, en longitudes de onda mucho más cortas (3,5 mm y 1,3 mm), pero no pudieron detectar las formas filamentosas porque son demasiado débiles y demasiado grandes para esta resolución”, explica Eduardo. Ros, miembro del equipo de investigación y programador europeo de la GMVA. «Esto muestra cómo diferentes telescopios pueden revelar diferentes características del mismo objeto», añade.

RadioAstron VLBI

Figura 2: La observación RadioAstron VLBI proporciona un telescopio virtual de hasta ocho veces el diámetro de la Tierra (línea de base máxima de 350.000 km). Crédito: Roscosmos

Los chorros de plasma de los blazares no son exactamente rectos y uniformes. Muestran giros y vueltas que muestran cómo el plasma se ve afectado por las fuerzas alrededor del agujero negro. Los astrónomos que estudiaron estos giros en 3C279, llamados filamentos helicoidales, descubrieron que fueron causados ​​por inestabilidades que se desarrollaban en el plasma del chorro. Al hacerlo, también se dieron cuenta de que la vieja teoría que habían utilizado para explicar la evolución de los aviones a lo largo del tiempo ya no funcionaba. Por lo tanto, se necesitan nuevos modelos teóricos para explicar cómo se forman y evolucionan estos filamentos helicoidales tan cerca del origen del chorro. Es un gran desafío, pero también una gran oportunidad para aprender más sobre estos asombrosos fenómenos cósmicos.

«Un aspecto particularmente intrigante de nuestros resultados es que sugieren la presencia de un campo magnético helicoidal que confina el chorro», explica Guang-Yao Zhao, actualmente afiliado al MPIfR y miembro del equipo científico. «Por lo tanto, podría ser el campo magnético, que gira en el sentido de las agujas del reloj alrededor del chorro en 3C 279, el que dirige y guía el plasma del chorro que viaja a una velocidad de 0,997 veces la velocidad de la luz».

«Se han observado filamentos helicoidales similares antes en chorros extragalácticos, pero a escalas mucho mayores, donde serían el resultado de diferentes partes del flujo que se mueven a diferentes velocidades y se cortan entre sí», añade Andrei Lobanov, otro científico del MPIfR en el equipo de investigación. . . «Con este estudio entramos en un área completamente nueva en la que estos filamentos pueden conectarse con los procesos más complejos en las inmediaciones del agujero negro que produce el chorro».

El estudio del chorro interno de 3C279, presentado ahora en el último número de Nature Astronomy, amplía los esfuerzos en curso para comprender mejor el papel de los campos magnéticos en la formación inicial de los flujos relativistas de los núcleos galácticos activos. Destaca los muchos desafíos pendientes para el modelado teórico actual de estos procesos y demuestra la necesidad de mejorar aún más los instrumentos y técnicas de radioastronomía que ofrecen la oportunidad única de obtener imágenes de objetos cósmicos distantes con una resolución angular récord.

Avances tecnológicos y colaboración

Utilizando una técnica especial llamada interferometría de línea de base muy larga (VLBI), se crea un telescopio virtual con un diámetro efectivo igual a la separación máxima entre las antenas involucradas en una observación combinando y correlacionando datos de diferentes radioobservatorios. Yuri Kovalev, científico del proyecto RadioAstron y ahora en MPIfR, subraya la importancia de una sana colaboración internacional para lograr tales resultados: “Los observatorios de doce países se sincronizaron con la antena espacial mediante relojes de hidrógeno, formando así un telescopio virtual del tamaño de la distancia que nos separa del espacio. Luna.»

Anton Zensus, director de MPIfR y una de las fuerzas impulsoras detrás de la misión RadioAstron durante las últimas dos décadas, dijo: «Los experimentos con RADIOASTRON que llevaron a imágenes como estas para el cuásar 3C279 son logros excepcionales posibles gracias a la colaboración científica internacional de observatorios. y científicos de muchos países. La misión requirió décadas de planificación conjunta antes de que se lanzara el satélite. La obtención de imágenes reales fue posible gracias a la conexión de grandes telescopios terrestres como el Effelsberg y al análisis cuidadoso de los datos en nuestro centro de correlación VLBI en Bonn.

Referencia: “Estructuras filamentosas como origen de la radiovariabilidad de los planos blazares” por Antonio Fuentes, José L. Gómez, José M. Martí, Manel Perucho, Guang-Yao Zhao, Rocco Lico, Andrei P. Lobanov, Gabriele Bruni, Yuri Y. Kovalev, Andrew Chael, Kazunori Akiyama, Katherine L. Bouman, He Sun, Ilje Cho, Efthalia Traianou, Teresa Toscano, Rohan Dahale, Marianna Foschi, Leonid I. Gurvits, Svetlana Jorstad, Jae-Young Kim, Alan P. Marscher , Yosuke Mizuno, Eduardo Ros y Tuomas Savolainen, 26 de octubre de 2023, astronomía natural.
DOI: 10.1038/s41550-023-02105-7

Informaciones complementarias

La misión del interferómetro Tierra-espacio de RadioAstron, activa desde julio de 2011 hasta mayo de 2019, consistió en un radiotelescopio en órbita de 10 metros (Spektr-R) y una colección de aproximadamente dos docenas de los radiotelescopios terrestres más grandes del mundo, incluidos los 100 m Radiotelescopio Effelsberg. Cuando se combinaron señales de telescopios individuales utilizando interferencias de ondas de radio, este conjunto de telescopios proporcionó una resolución angular máxima equivalente a la de un radiotelescopio de 350.000 km de diámetro, casi la distancia entre la Tierra y la Luna. Esto convirtió a RadioAstron en el instrumento de mayor resolución angular en la historia de la astronomía. El proyecto RadioAstron fue dirigido por el Centro Astroespacial del Instituto de Física Lebedev de la Academia de Ciencias de Rusia y la Asociación Científica y de Producción Lavochkin en virtud de un contrato con la corporación espacial nacional ROSCOSMOS, en colaboración con organizaciones asociadas en Rusia y otros países. Los datos astronómicos de esta misión son analizados por científicos individuales de todo el mundo, arrojando resultados comparables a los presentados aquí.

Los siguientes colaboradores del trabajo presentado están afiliados a MPIfR, en orden de aparición en la lista de autores: Guang-Yao Zhao, Andrei P. Lobanov, Yuri Y. Kovalev, Efthalia (Thalia) Traianou, Jae-Young Kim, Eduardo Ros, y Tuomas Savolainen. Los colaboradores Rocco Lico y Gabriele Bruni también estuvieron afiliados al MPIfR durante la misión RadioAstron.

Yuri Y. Kovalev reconoce el Premio de Investigación Friedrich Wilhelm Bessel de la Fundación Alexander von Humboldt.

READ  Escombros del cometa Halley para iluminar el cielo nocturno en los próximos días

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Descubrimiento sin precedentes en meteoritos desafía los modelos astrofísicos

Published

on

Descubrimiento sin precedentes en meteoritos desafía los modelos astrofísicos

Los investigadores han descubierto una rara partícula de polvo en un meteorito, formada por una estrella distinta de nuestro sol. Utilizando tomografía avanzada con sonda atómica, analizaron la proporción única de isótopos de magnesio de la partícula, revelando su origen a partir de un tipo recientemente identificado de supernova que quema hidrógeno. Este avance proporciona una mejor comprensión de los eventos cósmicos y la formación de estrellas. Crédito: SciTechDaily.com

Los científicos han descubierto una partícula de meteorito con una proporción de isótopos de magnesio sin precedentes, lo que apunta a su origen en una supernova que quema hidrógeno.

La investigación ha descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre formado por una estrella distinta a nuestro sol.

El descubrimiento fue realizado por la autora principal, la Dra. Nicole Nevill y sus colegas durante sus estudios de doctorado en la Universidad de Curtin, quienes actualmente trabajan en el Instituto de Ciencias Lunares y Planetarias en colaboración con NASAen el Centro Espacial Johnson.

Meteoritos y granos presolares

Los meteoritos están formados principalmente por materiales formados en nuestro sistema solar y también pueden contener pequeñas partículas de estrellas nacidas mucho antes que nuestro sol.

Las pistas de que estas partículas, llamadas granos presolares, son reliquias de otras estrellas, se descubren analizando los diferentes tipos de elementos que contienen.

Técnicas analíticas innovadoras

El Dr. Nevill utilizó una técnica llamada átomo Sonda tomográfica para analizar la partícula y reconstruir la química a escala atómica, accediendo a la información escondida en su interior.

«Estas partículas son como cápsulas del tiempo celestes y proporcionan una instantánea de la vida de su estrella madre», dijo el Dr. Nevill.

READ  La exposición a espacios verdes puede mejorar la salud cognitiva

“Los materiales creados en nuestro sistema solar tienen proporciones de isótopos predecibles: variantes de elementos con diferente número de neutrones. La partícula que analizamos tiene una proporción de isótopos de magnesio distinta de cualquier otra cosa en nuestro sistema solar.

“Los resultados fueron literalmente fuera de este mundo. La proporción de isótopos de magnesio más extrema, de estudios anteriores de granos presolares, fue de alrededor de 1.200. El grano en nuestro estudio tiene un valor de 3.025, que es el valor más alto jamás descubierto.

«Esta proporción de isótopos excepcionalmente alta sólo puede explicarse por la formación de un tipo de estrella recientemente descubierta: una supernova que quema hidrógeno».

Avances en astrofísica

El coautor, el Dr. David Saxey, del Centro John de Laeter en Curtin, dijo que la investigación innova la forma en que entendemos el universo, ampliando los límites de las técnicas analíticas y los modelos astrofísicos.

«La sonda atómica nos proporcionó un gran nivel de detalle al que no habíamos podido acceder en estudios anteriores», afirmó el Dr. Saxey.

“La supernova que quema hidrógeno es un tipo de estrella que se descubrió recientemente, casi al mismo tiempo que estábamos analizando la pequeña partícula de polvo. El uso de la sonda atómica en este estudio proporciona un nuevo nivel de detalle que nos ayuda a comprender cómo se formaron estas estrellas.

Vinculando los resultados de laboratorio con los fenómenos cósmicos

El coautor, el profesor Phil Bland de la Escuela de Ciencias Planetarias y de la Tierra de Curtin, dijo que los nuevos descubrimientos del estudio de partículas raras en meteoritos nos permiten comprender mejor los eventos cósmicos más allá de nuestro sistema solar.

READ  Los astronautas instalan un nuevo panel solar fuera de la Estación Espacial Internacional – Spaceflight Now

«Es simplemente asombroso poder relacionar mediciones a escala atómica en el laboratorio con un tipo de estrella recientemente descubierta».

La investigación titulada “Elemento a escala atómica y estudio isotópico de 25Polvo estelar rico en magnesio procedente de una supernova que quema hidrógeno » fue publicado en el Revista de astrofísica.

Referencia: “Elemento a escala atómica y estudio isotópico de 25Mg-rich Stardust from an H-burning Supernova” por ND Nevill, PA Bland, DW Saxey, WDA Rickard, P. Guagliardo, NE Timms, LV Forman, L. Daly y SM Reddy, 28 de marzo de 2024, La revista de astrofísica.
DOI: 10.3847/1538-4357/ad2996

Continue Reading

Horoscopo

Una nueva era: comienza la campaña de lanzamiento del Ariane 6

Published

on

Una nueva era: comienza la campaña de lanzamiento del Ariane 6

El 5 de julio de 2023, el lanzador Ariane 5 realizó su último vuelo, poniendo así fin a los 27 años de carrera del que fue el primer cohete pesado de Europa. Casi diez meses después, Arianespace vuelve a la plataforma de lanzamiento con su nuevo caballo de batalla avanzado para el transporte pesado: el Ariane 6.

Por primera vez, el núcleo central y los propulsores del Ariane 6 fueron entregados a la plataforma de lanzamiento ELA-4 en Kourou, Guayana Francesa, marcando oficialmente el inicio de la campaña de lanzamiento inaugural.

El miércoles 24 de abril, el núcleo central del cohete, compuesto por el propulsor principal y la etapa superior, fue transportado 800 metros desde el edificio de montaje del lanzador hasta la plataforma ELA-4, donde fue instalado sobre la mesa de lanzamiento mediante una grúa. y con la asistencia de vehículos de guiado automático (AGV).

Durante los dos días siguientes, Arianespace trabajó para entregar los dos propulsores de cohetes de estado sólido P120C del vehículo a la plataforma y luego montarlos en la mesa de lanzamiento a cada lado del núcleo central. Esta es la configuración del Ariane 62 que realizará la primera misión del vehículo.

El primer cohete propulsor sólido Ariane 6 se transporta al sitio de lanzamiento ELA-4 para su integración. (Crédito: ESA/ArianeGroup/CNES)

Al igual que su predecesor, el Ariane 6 tiene un diseño de dos etapas, propulsado por motores que queman hidrógeno líquido y oxígeno líquido. La primera etapa está equipada con un motor Vulcain 2.1, una versión mejorada del motor Vulcain 2 que volaba en el Ariane 5. La segunda etapa, por su parte, está equipada con un motor Vinci de nuevo diseño, capaz de producir 180 kN de empuje en una aspiradora.

READ  En una prueba secreta para enfriar la Tierra, científicos estadounidenses envían luz solar al espacio

Ariane 6 está configurado para volar con un solo par o dos pares de propulsores de cohetes sólidos P120C, que producen un porcentaje importante del empuje total en el despegue. Cada propulsor contiene 142 toneladas de propulsor sólido y puede generar hasta 4.650 kN de empuje.

La capacidad de carga del Ariane 6 varía según la configuración de vuelo utilizada. La versión Ariane 62 que utiliza dos propulsores es capaz de transportar hasta 10.350 kg a la órbita terrestre baja (LEO) y 4.500 kg a la órbita de transferencia geoestacionaria (GTO), mientras que la variante Ariane 64 con cuatro propulsores puede colocar hasta 21.500 kg en órbita baja. Órbita terrestre (LEO). y 11.500 kg en GTO.

«El lanzamiento del Ariane 6 y la restauración del acceso de Europa al espacio son una prioridad absoluta para la ESA a la hora de reanudar los lanzamientos regulares de cohetes desde el puerto espacial europeo», afirmó el director general de la ESA, Josef Aschbacher. “Juntar las etapas del cohete en la plataforma de lanzamiento marca el inicio de una campaña de lanzamiento y muestra que ya casi llegamos; Pronto veremos esta belleza elevarse hacia el cielo.

El siguiente paso en la campaña inicial del Ariane 6 es acoplar los propulsores P120C al núcleo central, actuando como mecanismo de soporte para la pila de lanzamiento. Una vez ensamblados, los equipos realizarán las conexiones mecánicas y eléctricas necesarias.

Luego, para completar el primer Ariane 6, sólo quedará instalar el carenado con las cargas útiles encapsuladas en su interior. Esto tendrá lugar unas semanas antes de la fecha de lanzamiento prevista.

READ  La NASA finalmente obtiene su misión más ambiciosa: ¡y es costosa!

Estas operaciones de integración de vehículos se llevaron a cabo bajo la jurisdicción primaria de la ESA, con el apoyo de ArianeGroup y la agencia espacial francesa CNES.

«Ver el nuevo lanzador europeo en la plataforma de lanzamiento marca la finalización de años de trabajo en las oficinas de diseño y plantas de producción de ArianeGroup y de todos nuestros socios industriales en Europa», dijo Martin Sion, director ejecutivo de ArianeGroup. “Este evento marca también el inicio de una nueva etapa de la campaña de primeros vuelos, con todos los desafíos y complejidades que esto conlleva. Los miembros de nuestro Space Team Europe están poniendo todo su conocimiento y experiencia para que este primer vuelo sea un completo éxito.

El primer núcleo central de Ariane 6 está a punto de ser integrado. (Crédito: ESA/ArianeGroup/CNES)

Ariane 6 está diseñado para poder lanzar varias configuraciones de misión. Estas podrían variar desde misiones LEO que involucran constelaciones de satélites hasta misiones Galileo de lanzamiento dual en órbita terrestre media (MEO), lanzamiento único y lanzamiento dual de satélites geosincrónicos/geoestacionarios.

Para su primer lanzamiento, Ariane 6 intentará entregar un conjunto de pequeñas cargas útiles y experimentos a LEO para clientes como la ESA, la NASA, universidades europeas y varias empresas comerciales.

Algunas cargas útiles constan de CubeSats, mientras que otras permanecerán unidas a la etapa superior para documentar la misión. Dos cargas útiles regresarán a la Tierra en forma de cápsulas de reentrada, diseñadas para probar nuevos materiales.

Arianespace y la ESA apuntan actualmente a una ventana entre el 15 de junio y el 31 de julio de 2024 para el primer vuelo de Ariane 6.

READ  Escombros del cometa Halley para iluminar el cielo nocturno en los próximos días

“El programa Ariane 6 entra ahora en su recta final antes del vuelo inaugural desde el Puerto Espacial Europeo en la Guayana Francesa. La soberanía europea sobre el acceso al espacio vuelve a ser posible gracias al duro trabajo de los equipos de la ESA, ArianeGroup y CNES”, declaró Philippe Baptiste, director general del CNES. “Me gustaría agradecerles y enviarles mis mejores deseos para las etapas finales. ¡Vamos Ariane 6!

(Imagen principal: El primer núcleo central de Ariane 6 se encuentra dentro del edificio móvil del complejo de lanzamiento ELA-4 en Kourou en preparación para su lanzamiento inaugural. Crédito: ESA/ArianeGroup/CNES)

Continue Reading

Horoscopo

Encontrado el indicio más prometedor de vida en otro planeta, cortesía de James Webb

Published

on

Encontrado el indicio más prometedor de vida en otro planeta, cortesía de James Webb

Los científicos se están centrando en detectar sulfuro de dimetilo (DMS) en su atmósfera.

El Telescopio Espacial James Webb (JWST), el telescopio más potente jamás lanzado, está a punto de comenzar una misión de observación crucial en la búsqueda de vida extraterrestre.

Como se informó Los tiempos, El telescopio enfocará un planeta distante que orbita una estrella enana roja, K2-18b, ubicada a 124 años luz de distancia.

K2-18b ha atraído la atención de los científicos debido a su potencial para albergar vida. Se cree que es un mundo cubierto de océanos que es aproximadamente 2,6 veces más grande que la Tierra.

El elemento clave que buscan los científicos es el sulfuro de dimetilo (DMS), un gas con características fascinantes. Según la NASA, en la Tierra el DMS es “producido únicamente por la vida”, principalmente por el fitoplancton marino.

La presencia de DMS en la atmósfera de K2-18b sería un descubrimiento importante, aunque el Dr. Nikku Madhusudhan, astrofísico principal del estudio en Cambridge, advierte contra sacar conclusiones precipitadas. Aunque los datos preliminares del JWST sugieren una alta probabilidad (más del 50%) de la presencia de DMS, se necesitan más análisis. El telescopio pasará ocho horas observando este viernes, seguidas de meses de procesamiento de datos antes de poder encontrar una respuesta definitiva.

La ausencia de un proceso natural, geológico o químico que se sepa que genera DMS en ausencia de vida añade peso al entusiasmo. Sin embargo, incluso si se confirma, la gran distancia de K2-18b presenta un obstáculo tecnológico. Viajando a la velocidad de la nave espacial Voyager (60.000 kilómetros por hora), una sonda tardaría 2,2 millones de años en llegar al planeta.

READ  La exposición a espacios verdes puede mejorar la salud cognitiva

A pesar de la inmensa distancia, la capacidad del JWST para analizar la composición química de la atmósfera de un planeta mediante el análisis espectral de la luz de las estrellas que se filtra a través de sus nubes proporciona una nueva ventana al potencial de vida más allá de la Tierra. Esta misión tiene el potencial de responder a la antigua pregunta de si estamos realmente solos en el universo.

Las próximas observaciones también pretenden aclarar la existencia de metano y dióxido de carbono en la atmósfera de K2-18b, resolviendo potencialmente el «problema de metano faltante» que ha desconcertado a los científicos durante más de una década. Si bien continúa el trabajo teórico sobre las fuentes no biológicas del gas, se esperan conclusiones definitivas dentro de cuatro a seis meses.

Continue Reading

Trending