Connect with us

Horoscopo

¿Hay un vacío gigante dividiendo el universo?

Published

on

¿Hay un vacío gigante dividiendo el universo?

La reciente «tensión de Hubble» en cosmología, marcada por mediciones contradictorias de la tasa de expansión, plantea dudas sobre el modelo cosmológico estándar. Una nueva teoría postula que un vacío subdenso gigante podría explicar estas discrepancias, desafiando las opiniones tradicionales sobre la distribución de la materia en el universo y sugiriendo una posible revisión de la teoría gravitacional de Einstein.

Los cosmólogos proponen un vacío gigante en el espacio como solución a la «tensión de Hubble», cuestionan los modelos convencionales y sugieren una revisión de la teoría de la gravedad de Einstein.

Uno de los mayores misterios de la cosmología es la velocidad a la que se expande el universo. Esto se puede predecir utilizando el modelo estándar de cosmología, también conocido como Materia oscura fría Lambda (ΛCDM). Este modelo se basa en observaciones detalladas de la luz dejada por el Big Bang – lo que llamamos el fondo cósmico de microondas (CMB).

La expansión del universo aleja a las galaxias unas de otras. Cuanto más lejos están de nosotros, más rápido se mueven. La relación entre la velocidad y la distancia de una galaxia se rige por la «constante de Hubble», que es aproximadamente 70 km por segundo por megaparsec (una unidad de longitud en astronomía). Esto significa que una galaxia gana alrededor de 50.000 millas por hora por cada millón de años luz está distante de nosotros.

Pero desafortunadamente para el modelo estándar, este valor ha sido cuestionado recientemente, lo que ha llevado a lo que los científicos llaman el «Voltaje del Hubble». Cuando medimos la tasa de expansión utilizando galaxias y supernovas (estrellas en explosión) cercanas, es un 10% más alta que cuando la predecimos basándonos en el CMB.

vacío gigante

Concepción artística del Vacío Gigante y los filamentos y paredes que lo rodean. Crédito: Pablo Carlos Budassi

En nuestro nuevo papel, presentamos una posible explicación: que vivimos en un vacío gigante en el espacio (un área con una densidad inferior a la media). Mostramos que esto podría inflar las mediciones locales debido a las salidas de material del vacío. Los flujos se producirían cuando regiones más densas que rodean un vacío lo separan; ejercerían una atracción gravitacional mayor que la materia de menor densidad dentro del vacío.

READ  SpaceX acelera la tasa de lanzamiento de la quinta misión Falcon 9 en tres semanas - Spaceflight Now

En este escenario, necesitaríamos estar cerca del centro de un vacío con un radio de aproximadamente mil millones de años luz y una densidad aproximadamente un 20% menor que el promedio del universo en su conjunto; por lo tanto, no estaríamos completamente vacíos.

Un vacío tan vasto y profundo es inesperado en el modelo estándar y, por tanto, controvertido. El CMB proporciona información sobre la estructura del universo naciente, sugiriendo que la materia actual debería estar distribuida de manera bastante uniforme. Sin embargo, al contar directamente el número de galaxias en diferentes regiones de hecho sugiere Estamos en un vacío local.

Cambiar las leyes de la gravedad.

Queríamos probar esta idea más a fondo comparando muchas observaciones cosmológicas diferentes bajo el supuesto de que vivimos en un gran vacío que surge de una pequeña fluctuación de densidad al principio.

Para hacer esto, nuestro modelo no incorporó un ΛCDM sino una teoría alternativa llamada Dinámica Newtoniana Modificada (LUNES).

MOND se propuso inicialmente para explicar las anomalías en las velocidades de rotación de las galaxias, lo que llevó a la sugerencia de una sustancia invisible llamada «materia oscura». MOND sugiere, en cambio, que las anomalías pueden explicarse por la ruptura de la ley de gravedad de Newton cuando la atracción gravitacional es muy débil, como es el caso en las regiones exteriores de las galaxias.

La historia general de la expansión cósmica en MOND sería similar a la del Modelo Estándar, pero la estructura (como los cúmulos de galaxias) crecería más rápidamente en MOND. Nuestro modelo captura cómo se vería el universo local en un universo MOND. Y descubrimos que esto permitiría que las medidas locales de la tasa de expansión actual fluctuaran dependiendo de nuestra ubicación.

Mapa de calor de las fluctuaciones de temperatura en el fondo cósmico de microondas (CMB)

Fluctuaciones de temperatura del CMB: Una imagen detallada de todo el cielo del universo naciente creada a partir de nueve años de datos WMAP revela fluctuaciones de temperatura de 13,77 mil millones de años (mostradas por diferencias de color). Crédito: Equipo científico NASA / WMAP

Las observaciones recientes de galaxias han proporcionado una nueva prueba crucial para nuestro modelo basada en la velocidad que predice en diferentes ubicaciones. Esto se puede hacer midiendo lo que se llama caudal global, que es la velocidad promedio de la materia en una esfera determinada, densa o no. Esto varía con el radio de la esfera, con avistamientos recientes demostración él sigue hasta mil millones de años luz de distancia.

READ  La llegada de las plantas cambió radicalmente el ciclo del carbono y enfrió la tierra: estudio

Curiosamente, el flujo masivo de galaxias a esta escala cuadruplicó la velocidad esperada en el Modelo Estándar. También parece aumentar con el tamaño de la región considerada, contrariamente a lo que predice el modelo estándar. La probabilidad de que esto se ajuste al modelo estándar es menos de una entre un millón.

Esto nos llevó a ver qué predijo nuestro estudio para el flujo masivo. Descubrimos que esto da un resultado bastante bueno. fósforo a las observaciones. Esto requiere que estemos bastante cerca del centro del vacío y que el vacío esté más vacío en su centro.

¿Caso cerrado?

Nuestros resultados llegan en un momento en que las soluciones populares a la tensión del Hubble están en problemas. Algunas personas piensan que simplemente necesitamos mediciones más precisas. Otros piensan que este problema se puede resolver asumiendo que la alta tasa de expansión que medimos localmente es en realidad el correcto. Pero esto requiere una ligera modificación de la historia de la expansión en el universo primitivo para que el CMB siga pareciendo correcto.

Desafortunadamente, un estudio influyente destaca siete problemas con este enfoque. Si el universo se hubiera expandido un 10% más rápido durante la gran mayor parte de la historia cósmica, también sería aproximadamente un 10% más joven, lo que contradeciría la hipótesis. edad de las estrellas más antiguas.

La existencia de un vacío local profundo y extenso en el número de galaxias y los rápidos flujos masivos observados sugieren fuertemente que la estructura está creciendo más rápido de lo esperado en ΛCDM en escalas de decenas a cientos de millones de años luz.

Cúmulo de galaxias 'El Gordo' con mapa de masas

Esta es una imagen del Telescopio Espacial Hubble del cúmulo de galaxias más masivo jamás visto cuando el universo tenía sólo la mitad de su edad actual de 13.800 millones de años. El cúmulo contiene varios cientos de galaxias que pululan bajo la atracción gravitacional colectiva. La masa total del cúmulo, tal como se refina en las nuevas mediciones del Hubble, se estima en 3 millones de billones de estrellas como nuestro Sol (unas 3.000 veces más masiva que nuestra propia galaxia, la Vía Láctea), bueno, la mayor parte de la masa está oculta. como materia oscura. La ubicación de la materia oscura se muestra en la superposición azul. Como la materia oscura no emite radiación, los astrónomos del Hubble miden con precisión cómo su gravedad distorsiona las imágenes de galaxias distantes, como un espejo de feria. Esto les permitió llegar a una estimación de la masa del cúmulo. El cúmulo fue apodado El Gordo («el grande» en español) en 2012, cuando las observaciones de rayos X y los estudios cinemáticos sugirieron por primera vez que era inusualmente masivo para la época en que existió en el universo primitivo. Los datos del Hubble confirmaron que el grupo está experimentando una fusión violenta entre dos grupos más pequeños. Crédito: NASA, ESA y J. Jee (Universidad de California, Davis)

Curiosamente, sabemos que se formó el enorme cúmulo de galaxias El Gordo (ver imagen arriba). Demasiado pronto en la historia cósmica y tiene una masa y una velocidad de colisión demasiado altas para ser compatible con el modelo estándar. Esto demuestra una vez más que la estructura se forma demasiado lentamente en este modelo.

READ  El Mars Perseverance Rover de la NASA deposita la primera muestra en la superficie marciana para su posible regreso a la Tierra

Dado que la gravedad es la fuerza dominante en escalas tan grandes, probablemente tendremos que ampliar la teoría de la gravedad de Einstein, la Relatividad General, pero sólo a escalas mayores. más grande que un millón de años luz.

Sin embargo, no tenemos una forma eficaz de medir el comportamiento de la gravedad a escalas mucho mayores: no existen objetos gravitacionalmente enormes. Podemos asumir que la Relatividad General sigue siendo válida y compararla con las observaciones, pero es precisamente este enfoque el que conduce a las tensiones muy serias que enfrenta actualmente nuestro mejor modelo de cosmología.

Se cree que Einstein dijo que no podemos resolver problemas con el mismo pensamiento que condujo a los problemas en primer lugar. Incluso si los cambios requeridos no son drásticos, es posible que veamos la primera evidencia confiable en más de un siglo de la necesidad de modificar nuestra teoría de la gravedad.

Escrito por Indranil Banik, investigador postdoctoral en Astrofísica, Universidad de St Andrews.

Adaptado de un artículo publicado originalmente en La conversación.La conversación

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Cómo se renovó la Luna

Published

on

Cómo se renovó la Luna

Puede parecer que nuestra Luna brilla pacíficamente en el cielo nocturno, pero hace miles de millones de años, la agitación volcánica le dio un rostro.

Una pregunta que ha permanecido sin respuesta durante décadas es por qué hay más rocas volcánicas ricas en titanio, como la ilmenita, en el lado cercano que en el otro. Ahora, un equipo de investigadores del Laboratorio Planetario y Lunar de Arizona ofrece una posible explicación para esto.

La superficie lunar estuvo una vez inundada por un océano de magma en ebullición, y después de que el océano de magma se endureció, hubo un gran impacto en el lado opuesto. El calor de este impacto se extendió hacia el lado más cercano e hizo que la corteza se volviera inestable, provocando que capas de minerales más pesados ​​y densos en la superficie se hundieran gradualmente en el manto. Estos volvieron a derretirse y fueron expulsados ​​por los volcanes. La lava de estas erupciones (la mayoría de las cuales ocurrieron en el lado más cercano) terminó en lo que ahora son flujos de rocas volcánicas ricas en titanio. En otras palabras, la antigua cara de la Luna ha desaparecido y resurgido.

lo que hay debajo

La región de la Luna en cuestión se conoce como Procellarum KREEP Terrane (PKT). KREEP significa concentraciones elevadas de potasio (K), elementos de tierras raras (REE) y fósforo (P). Aquí también se encuentran basaltos ricos en ilmenita. Se cree que KREEP y los basaltos se formaron por primera vez cuando la Luna se enfrió después de su fase oceánica magmática. Pero la región siguió siendo caliente porque KREEP también contiene altos niveles de uranio y torio radiactivos.

READ  La llegada de las plantas cambió radicalmente el ciclo del carbono y enfrió la tierra: estudio

«La región PKT… representa la región volcánicamente más activa de la Luna, un resultado natural de la gran abundancia de elementos productores de calor», dijeron los investigadores en un comunicado. estudiar publicado recientemente en Nature Geoscience.

¿Por qué esta región está ubicada en el lado cercano, mientras que el lado opuesto carece de KREEP y basaltos ricos en ilmenita? Una hipótesis existente llamó la atención de los investigadores: sugería que después de que el océano de magma se endureciera en el lado cercano, las capas de estos minerales KREEP eran demasiado pesadas para permanecer en la superficie. Comenzaron a adentrarse más profundamente en el manto y hasta el límite entre el manto y el núcleo. Al hundirse, se pensaba que estas láminas minerales habían dejado rastros de material por todo el manto.

Si la hipótesis fuera correcta, esto significaría que debajo de la superficie lunar deberían existir trazas de minerales de la corteza magmática endurecida de KREEP en forma de láminas, que podrían llegar hasta el borde de la capa límite del núcleo.

¿Cómo se podría probar esto? Los datos gravitacionales de la misión del Laboratorio Interior y de Recuperación de Gravedad (GRAIL) a la Luna pueden haber tenido la respuesta. Esto les permitiría detectar anomalías gravitacionales causadas por la mayor densidad de la roca KREEP en comparación con los materiales circundantes.

Volviendo a la superficie

Los datos de GRAIL revelaron previamente la existencia de un patrón de anomalías de gravedad subsuperficial en la región PKT. Esto parecía similar al patrón que se habrían formado las capas de roca volcánica cuando se hundieron, por lo que el equipo de investigación decidió ejecutar una simulación por computadora del hundimiento de KREEP para ver qué tan bien coincidía la hipótesis con los hallazgos de GRAIL.

READ  Los anillos de Saturno roban el espectáculo en una nueva imagen del Telescopio Webb – Ars Technica

Efectivamente, la simulación terminó formando aproximadamente el mismo patrón que las anomalías encontradas por GRAIL. El patrón poligonal observado tanto en las simulaciones como en los datos de GRAIL probablemente significa que rastros de capas de KREEP más pesadas y basalto rico en ilmenita quedaron debajo de la superficie cuando estas capas se hundieron debido a su densidad, y GRAIL detectó sus residuos debido a su mayor gravedad. . para tirar. GRAIL también sugirió que había muchas anomalías más pequeñas en la región PKT, lo cual tiene sentido dado que gran parte de la corteza está formada por rocas volcánicas que habrían fluido y dejado residuos antes de derretirse y reconstruir la superficie durante las erupciones.

Ahora también tenemos una idea de cuándo ocurrió este fenómeno. Debido a que hay cuencas de impacto que datan de hace aproximadamente 4,22 mil millones de años (que no deben confundirse con el impacto anterior en el lado opuesto), pero se cree que el océano se endureció magmáticamente antes de esa fecha, los investigadores creen que la corteza también comenzó a fluir antes de esa fecha. este tiempo.

«Las anomalías en los límites del PKT proporcionan la evidencia física más directa de la naturaleza del océano post-magma… el derrocamiento del manto y el hundimiento de la ilmenita en el interior profundo», dijo el equipo en el mismo comunicado. estudiar.

Esto es sólo más información sobre cómo evolucionó la Luna y por qué es tan desigual. El lado cercano alguna vez estuvo lleno de lava que ahora es roca volcánica, gran parte de la cual existe en flujos llamados mare (que se traduce como «mar» en latín). La mayor parte de esta roca volcánica, especialmente en la región PKT, contiene elementos de tierras raras.

READ  Los datos del Hubble muestran que 'algo extraño' está pasando

Sólo podemos confirmar que en realidad hay rastros de una corteza antigua dentro de la Luna al recolectar material lunar real muy por debajo de la superficie. Cuando los astronautas de Artemis finalmente podrán recolectar muestras de material volcánico en la Luna en el sitio¿Quién sabe qué saldrá a la superficie?

Geociencias naturales, 2024. DOI: 10.1038/s41561-024-01408-2

Continue Reading

Horoscopo

La nueva plataforma de edición del epigenoma permite una programación precisa de modificaciones epigenéticas

Published

on

La nueva plataforma de edición del epigenoma permite una programación precisa de modificaciones epigenéticas

Los investigadores han desarrollado una nueva plataforma de edición del epigenoma que permite la manipulación precisa de las marcas de cromatina, revelando su impacto directo en la expresión genética y desafiando la comprensión previa de los mecanismos reguladores de los genes.

Un estudio del grupo Hackett del EMBL de Roma ha llevado al desarrollo de una potente tecnología de edición epigenética, que abre la posibilidad de programar con precisión modificaciones de la cromatina.

Comprender cómo se regulan los genes a nivel molecular es un desafío central en la biología moderna. Este complejo mecanismo está impulsado principalmente por la interacción entre proteínas llamadas factores de transcripción, ADN regiones reguladoras y modificaciones epigenéticas: alteraciones químicas que cambian la estructura de la cromatina. El conjunto de modificaciones epigenéticas del genoma de una célula se denomina epigenoma.

Avances en la edición del epigenoma.

En un estudio publicado hoy (9 de mayo) en genética natural, científicos del grupo Hackett del Laboratorio Europeo de Biología Molecular (EMBL) en Roma han desarrollado una plataforma modular de edición del epigenoma, un sistema para programar modificaciones epigenéticas en cualquier parte del genoma. El sistema permite a los científicos estudiar el impacto de cada modificación de la cromatina en la transcripción, el mecanismo por el cual los genes se copian en ARNm para impulsar la síntesis de proteínas.

Se cree que las modificaciones de la cromatina contribuyen a la regulación de procesos biológicos clave como el desarrollo, la respuesta a señales ambientales y las enfermedades.

Kit de herramientas de edición epigenética

Representación creativa de la caja de herramientas de edición epigenética: cada edificio representa el estado epigenético de un solo gen (las ventanas oscuras son genes silenciosos, las ventanas iluminadas son genes activos). Crane ilustra el sistema de edición epigenética que permite la deposición de novo de marcas de cromatina en cualquier ubicación genómica. Marzia Munafò

Para comprender los efectos de las marcas de cromatina específicas en la regulación genética, estudios previos han mapeado su distribución en los genomas de tipos de células sanas y enfermas. Al combinar estos datos con el análisis de la expresión genética y los efectos conocidos de la alteración de genes específicos, los científicos han asignado funciones a estas marcas de cromatina.

READ  SUNY-ESF Brave Space fomenta la comunidad para grupos marginados y subrepresentados

Sin embargo, ha resultado difícil determinar la relación causal entre las marcas de cromatina y la regulación genética. El desafío es analizar las contribuciones individuales de los muchos factores complejos involucrados en dicha regulación: marcas de cromatina, factores de transcripción y secuencias reguladoras de ADN.

Avance en la tecnología de edición del epigenoma

Los científicos del grupo Hackett han desarrollado un sistema modular de edición del epigenoma para programar con precisión nueve marcas de cromatina biológicamente importantes en cualquier región deseada del genoma. El sistema se basa en CRISPR, una tecnología de edición del genoma ampliamente utilizada que permite a los investigadores realizar cambios en ubicaciones específicas del ADN con alta precisión y precisión.

Estas alteraciones precisas les permitieron analizar cuidadosamente las relaciones causa-consecuencia entre las marcas de cromatina y sus efectos biológicos. Los científicos también diseñaron y utilizaron un «sistema informador», que les permitió medir los cambios en la expresión genética a nivel unicelular y comprender cómo los cambios en la secuencia del ADN influyen en el impacto de cada marca de cromatina. Sus resultados revelan el papel causal de una serie de importantes marcas de cromatina en la regulación genética.

Hallazgos clave y direcciones futuras

Por ejemplo, los investigadores descubrieron una nueva función para H3K4me3, una marca de cromatina que antes se pensaba que era el resultado de la transcripción. Observaron que H3K4me3 en realidad puede aumentar la transcripción por sí solo si se agrega artificialmente a ubicaciones específicas del ADN.

«Este es un resultado extremadamente emocionante e inesperado que va en contra de todas nuestras expectativas», dijo Cristina Policarpi, becaria postdoctoral en el grupo Hackett y científica principal del estudio. “Nuestros datos apuntan a una red reguladora compleja, en la que varios factores determinantes interactúan para modular los niveles de expresión génica en una célula determinada. Estos factores incluyen la estructura de la cromatina preexistente, la secuencia de ADN subyacente y la ubicación en el genoma.

READ  SpaceX acelera la tasa de lanzamiento de la quinta misión Falcon 9 en tres semanas - Spaceflight Now

Aplicaciones potenciales e investigaciones futuras.

Hackett y sus colegas están explorando actualmente formas de aprovechar esta tecnología a través de una startup prometedora. El siguiente paso será confirmar y ampliar estos hallazgos apuntando a genes en diferentes tipos de células y a gran escala. También queda por aclarar cómo las marcas de cromatina influyen en la transcripción a través de la diversidad genética y los mecanismos posteriores.

«Nuestra caja de herramientas modular de edición epigenética constituye un nuevo enfoque experimental para analizar las interrelaciones entre el genoma y el epigenoma», dijo Jamie Hackett, líder del grupo en EMBL Roma. “El sistema podría utilizarse en el futuro para comprender con mayor precisión la importancia de los cambios epigenómicos a la hora de influir en la actividad genética durante el desarrollo y en las enfermedades humanas. Por otro lado, la tecnología también abre la posibilidad de programar los niveles de expresión genética deseados de una manera altamente personalizable. Esta es una vía interesante para aplicaciones de precisión en la salud y podría resultar útil en el contexto de la enfermedad.

Referencia: “La edición sistemática del epigenoma captura la función instructiva dependiente del contexto de las modificaciones de la cromatina” 9 de mayo de 2024, genética natural.
DOI: 10.1038/s41588-024-01706-w

Continue Reading

Horoscopo

La sonda china Chang'e 6 en la cara oculta de la Luna tiene un gran misterio lunar que resolver

Published

on

La sonda china Chang'e 6 en la cara oculta de la Luna tiene un gran misterio lunar que resolver

China Chang'e-6 misión, actualmente en camino para recuperar una muestra de material del otro lado de La lunaProbará teorías que explican por qué las caras lunares cercanas y lejanas son tan diferentes.

Teniendo lanzado el 3 de mayo Se espera que Chang'e-6 aterrice a principios de junio en la Cuenca de Impacto del Doble Anillo del Apolo, que se encuentra dentro de una cuenca aún más grande. Cuenca del Polo Sur – Aitken (SPA). El inmenso SPA es el elemento de mayor impacto de su tipo en el mundo. sistema solar, con una extensión de 2.400 kilómetros por 2.050 kilómetros (1.490 por 1.270 millas) de superficie; se formó hace aproximadamente 4,3 mil millones de años, es decir. muy principios de la historia del sistema solar. Aunque Apolo es más joven, también es el lugar de impacto más grande superpuesto a la SPA. Apolo tiene una estructura de doble anillo, con su anillo interior de picos montañosos con un diámetro de 247 kilómetros (153 millas) y un anillo exterior de aproximadamente 492 kilómetros (305 millas) de diámetro.

Continue Reading

Trending