Una representación de la evolución del universo durante 13,77 mil millones de años. El extremo izquierdo representa el momento más temprano que ahora podemos comprender, cuando un período de «inflación» produjo un crecimiento exponencial en el universo. (El tamaño está representado por la extensión vertical de la cuadrícula en este gráfico). Durante los siguientes mil millones de años, la expansión del universo se desaceleró gradualmente a medida que la materia del universo se atraía entre sí por la gravedad. Más recientemente, la expansión ha comenzado a acelerarse nuevamente a medida que los efectos repulsivos de la energía oscura dominan la expansión del universo. Crédito: Centro de Vuelo Espacial Goddard de la NASA
Tres décadas de observaciones de telescopios espaciales convergen en un valor preciso de la constante de Hubble
La historia de la ciencia recordará que la búsqueda de la tasa de expansión del universo fue el gran Santo Grial de la cosmología del siglo XX. Sin ninguna evidencia observacional de la expansión, contracción o quietud del espacio, no tendríamos idea de cuándo el universo iba o venía. Además, tampoco tendríamos idea de cuántos años tiene, o de hecho, si el universo fuera eterno.
El primer acto de esta revelación se produjo cuando, hace un siglo, el astrónomo estadounidense Edwin Hubble descubrió una miríada de galaxias fuera de nuestra galaxia natal, la[{» attribute=»»>Milky Way. And, the galaxies weren’t standing still. Hubble found that the farther a galaxy is, the faster it appears to be moving away from us. This could be interpreted as the uniform expansion of space. Hubble even said that he studied the galaxies simply as “markers of space.” However, he was never fully convinced of the idea of a uniformly expanding universe. He suspected his measurements might be evidence of something else more oddball going on in the universe.
“You are getting the most precise measure of the expansion rate for the universe from the gold standard of telescopes and cosmic mile markers.” — Nobel Laureate Adam Riess
For decades after Hubble, astronomers have toiled to nail down the expansion rate that would yield a true age for the universe. This required building a string of cosmic distance ladders assembled from sources that astronomers have a reasonable confidence in their intrinsic brightness. The brightest, and therefore farthest detectable milepost markers are Type Ia supernovae.
When the Hubble Space Telescope was launched in 1990 the universe’s expansion rate was so uncertain that its age might only be 8 billion years or as great as 20 billion years.
After 30 years of meticulous work using the Hubble telescope’s extraordinary observing power, numerous teams of astronomers have narrowed the expansion rate to a precision of just over 1%. This can be used to predict that the universe will double in size in 10 billion years.
The measurement is about eight times more precise than Hubble’s expected capability. But it’s become more than just refining a number to cosmologists. In the interim the mystery of dark energy pushing the universe apart was discovered. To compound things even further, the present expansion rate is different than it is expected to be as the universe appeared shortly after the big bang.
You think this would frustrate astronomers, but instead it opens the door to discovering new physics, and confronting unanticipated questions about the underlying workings of the universe. And, finally, reminding us that we have a lot more to learn among the stars.
This collection of 36 images from NASA’s Hubble Space Telescope features galaxies that are all hosts to both Cepheid variables and supernovae. These two celestial phenomena are both crucial tools used by astronomers to determine astronomical distance, and have been used to refine our measurement of the Hubble constant, the expansion rate of the universe. The galaxies shown in this photo (from top row, left to bottom row, right) are: NGC 7541, NGC 3021, NGC 5643, NGC 3254, NGC 3147, NGC 105, NGC 2608, NGC 3583, NGC 3147, Mrk 1337, NGC 5861, NGC 2525, NGC 1015, UGC 9391, NGC 691, NGC 7678, NGC 2442, NGC 5468, NGC 5917, NGC 4639, NGC 3972, The Antennae Galaxies, NGC 5584, M106, NGC 7250, NGC 3370, NGC 5728, NGC 4424, NGC 1559, NGC 3982, NGC 1448, NGC 4680, M101, NGC 1365, NGC 7329, and NGC 3447. Credit: NASA, ESA, Adam G. Riess (STScI, JHU)
Hubble Reaches New Milestone in Mystery of Universe’s Expansion Rate
NASA’s Hubble Space Telescope has completed a nearly 30-year marathon by calibrating more than 40 “milepost markers” of space and time to let scientists precisely calculate the expansion rate of the cosmos — a mission with a plot twist.
Pursuit of the universe’s expansion rate began in the 1920s with measurements by astronomers Edwin P. Hubble and Georges Lemaître. In 1998, this led to the discovery of “dark energy,” a mysterious repulsive force accelerating the universe’s expansion. In recent years, thanks to data from Hubble and other telescopes, astronomers found another strange twist: a discrepancy between the expansion rate as measured in the local universe compared to independent observations from right after the big bang, which predict a different expansion value.
The cause of this discrepancy remains a mystery. But Hubble data, encompassing a variety of cosmic objects that serve as distance markers, support the idea that something weird is going on, possibly involving brand new physics.
“You are getting the most precise measure of the expansion rate for the universe from the gold standard of telescopes and cosmic mile markers,” said Nobel Laureate Adam Riess of the Space Telescope Science Institute (STScI) and the Johns Hopkins University in Baltimore, Maryland.
Riess leads a scientific collaboration investigating the universe’s expansion rate called SHOES, which stands for Supernova, H, for the Equation of State of Dark Energy. “This is what the Hubble Space Telescope was built to do, using the best techniques we know to do it. This is likely Hubble’s magnum opus, because it would take another 30 years of Hubble’s life to even double this sample size,” Riess said.
Riess’s team’s paper, to be published in the Special Focus issue of The Astrophysical Journal reports on completing the biggest and likely last major update on the Hubble constant. The new results more than double the prior sample of cosmic distance markers. His team also reanalyzed all of the prior data, with the whole dataset now including over 1,000 Hubble orbits.
When NASA conceived of a large space telescope in the 1970s, one of the primary justifications for the expense and extraordinary technical effort was to be able to resolve Cepheids, stars that brighten and dim periodically, seen inside our Milky Way and external galaxies. Cepheids have long been the gold standard of cosmic mile markers since their utility was discovered by astronomer Henrietta Swan Leavitt in 1912. To calculate much greater distances, astronomers use exploding stars called Type Ia supernovae.
Combined, these objects built a “cosmic distance ladder” across the universe and are essential to measuring the expansion rate of the universe, called the Hubble constant after Edwin Hubble. That value is critical to estimating the age of the universe and provides a basic test of our understanding of the universe.
Starting right after Hubble’s launch in 1990, the first set of observations of Cepheid stars to refine the Hubble constant was undertaken by two teams: the HST Key Project led by Wendy Freedman, Robert Kennicutt and Jeremy Mould, Marc Aaronson and another by Allan Sandage and collaborators, that used Cepheids as milepost markers to refine the distance measurement to nearby galaxies. By the early 2000s the teams declared “mission accomplished” by reaching an accuracy of 10 percent for the Hubble constant, 72 plus or minus 8 kilometers per second per megaparsec.
In 2005 and again in 2009, the addition of powerful new cameras onboard the Hubble telescope launched “Generation 2” of the Hubble constant research as teams set out to refine the value to an accuracy of just one percent. This was inaugurated by the SHOES program. Several teams of astronomers using Hubble, including SHOES, have converged on a Hubble constant value of 73 plus or minus 1 kilometer per second per megaparsec. While other approaches have been used to investigate the Hubble constant question, different teams have come up with values close to the same number.
The SHOES team includes long-time leaders Dr. Wenlong Yuan of Johns Hopkins University, Dr. Lucas Macri of Texas A&M University, Dr. Stefano Casertano of STScI and Dr. Dan Scolnic of Duke University. The project was designed to bracket the universe by matching the precision of the Hubble constant inferred from studying the cosmic microwave background radiation leftover from the dawn of the universe.
“The Hubble constant is a very special number. It can be used to thread a needle from the past to the present for an end-to-end test of our understanding of the universe. This took a phenomenal amount of detailed work,” said Dr. Licia Verde, a cosmologist at ICREA and the ICC-University of Barcelona, speaking about the SHOES team’s work.
The team measured 42 of the supernova milepost markers with Hubble. Because they are seen exploding at a rate of about one per year, Hubble has, for all practical purposes, logged as many supernovae as possible for measuring the universe’s expansion. Riess said, “We have a complete sample of all the supernovae accessible to the Hubble telescope seen in the last 40 years.” Like the lyrics from the song “Kansas City,” from the Broadway musical Oklahoma, Hubble has “gone about as fur as it c’n go!”
Weird Physics?
The expansion rate of the universe was predicted to be slower than what Hubble actually sees. By combining the Standard Cosmological Model of the Universe and measurements by the European Space Agency’s Planck mission (which observed the relic cosmic microwave background from 13.8 billion years ago), astronomers predict a lower value for the Hubble constant: 67.5 plus or minus 0.5 kilometers per second per megaparsec, compared to the SHOES team’s estimate of 73.
Given the large Hubble sample size, there is only a one-in-a-million chance astronomers are wrong due to an unlucky draw, said Riess, a common threshold for taking a problem seriously in physics. This finding is untangling what was becoming a nice and tidy picture of the universe’s dynamical evolution. Astronomers are at a loss for an explanation of the disconnect between the expansion rate of the local universe versus the primeval universe, but the answer might involve additional physics of the universe.
Such confounding findings have made life more exciting for cosmologists like Riess. Thirty years ago they started out to measure the Hubble constant to benchmark the universe, but now it has become something even more interesting. “Actually, I don’t care what the expansion value is specifically, but I like to use it to learn about the universe,” Riess added.
NASA’s new Webb Space Telescope will extend on Hubble’s work by showing these cosmic milepost markers at greater distances or sharper resolution than what Hubble can see.
Reference: “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team” by Adam G. Riess, Wenlong Yuan, Lucas M. Macri, Dan Scolnic, Dillon Brout, Stefano Casertano, David O. Jones, Yukei Murakami, Louise Breuval, Thomas G. Brink, Alexei V. Filippenko, Samantha Hoffmann, Saurabh W. Jha, W. D’arcy Kenworthy, John Mackenty, Benjamin E. Stahl and Weikang Zheng, Accepted, The Astrophysical Journal. arXiv:2112.04510
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.
Texto descriptivo proporcionado por los arquitectos. El cuarto piso de la sucursal de Hyundai Department Store Pangyo fue renovado después de The Hyundai Seoul. U-PLEX en el cuarto piso es un espacio comercial para la generación MZ y todos los clientes que aprecian un estilo de vida juvenil y fue diseñado como un espacio premium único con un sentido de YOUNG VIBE.
El concepto de diseño es TIME COLLAGE, que significa un nuevo espacio-tiempo, es decir, el tercer espacio donde diferentes elementos del pasado y del presente coexisten y brindan una nueva tendencia creada por una combinación de espacio y cosas completamente diferentes que los clientes nunca han experimentado. antes de. Es un espacio que ofrece un nuevo ambiente de lujo y una experiencia divertida y fresca que inspira a los consumidores de MZ. El espacio consta del edificio principal, un centro comercial y una plaza emblemática que conecta los dos espacios.
Como si el pasado y el futuro se fusionaran, el edificio principal combina elementos clásicos y modernos para formar un nuevo espacio virtual. La iluminación suspendida se agrega debajo del techo existente para crear un ambiente de todo el espacio, y las fachadas y los pilares crean un nuevo ambiente de lujo que no es pesado gracias a los detalles que combinan materiales de espejo modernos basados en diseños y materiales clásicos. Además, al crear un sistema de islas único para cada área, intentamos que todo el espacio pareciera una tienda multimarca.
El marco de la pared de la isla del edificio principal combina perfiles de aluminio, y cada vestidor tiene un acabado de vidrio esmerilado para brindar una unidad de diseño moderno, lo que permite a las marcas crear una apariencia única dentro del marco del perfil. El centro comercial tiene un ambiente más futurista y el diseño impactante del techo y los elementos de diseño vertical se han creado utilizando materiales modernos para crear un espacio. Se crearon patrones regulares combinando un techo de iluminación con marcos de metal, y se combinó un sistema de isla con el techo para crear una identidad de todo el espacio. Gracias a la barra vertical en forma de cruz conectada a la rejilla del techo, se crea unidad en todo el espacio, permitiendo la exposición individual de la marca.
Iconic square es un espacio que conecta el edificio principal y el centro comercial para crear un nuevo espacio de experiencia donde los clientes pueden permanecer, además de su papel como PASAJE. Hemos creado un PASAJE impactante reinterpretando el ambiente del salón del vestíbulo del antiguo hotel y edificio. Se han aplicado grandes losas con dibujos de mármol teñido en diferentes tipos según el lado que los muestre, y se ha creado un ambiente clásico a través del material general y el dibujo del techo.
Planificar
El patrón de mármol se extendió al tráfico para que se sintiera como un nuevo espacio, y la pared regular también creó un límite entre el tráfico y la tienda mientras lo difuminaba, convirtiéndose en un espacio donde los clientes podían disfrutar libremente. Al darle al espacio una fuerte identidad, hemos tratado de ofrecer un espacio donde cualquier marca pueda aparecer diferente con un sentimiento de diversidad.
Agrandar/ Lanzamiento de la misión Orbital Flight Test-2 de Boeing el 19 de mayo de 2022.
Trevor Mahlman
Han pasado cinco semanas desde el regreso de la nave espacial Starliner de Boeing desde un vuelo de prueba en gran parte exitoso a la Estación Espacial Internacional, y la compañía continúa revisando los datos de la misión junto con los ingenieros de la NASA.
Hasta ahora no ha habido sensacionales. De hecho, las fuentes dicen que el desempeño relativamente limpio de Starliner ha planteado la posibilidad de que el vehículo pueda realizar su primer vuelo tripulado este año en diciembre.
Esta misión, llamada Crew Flight Test, probablemente llevará a dos astronautas a la estación espacial. Si tiene éxito, allanaría el camino para misiones operativas de larga duración a la estación espacial en 2023 y le daría a la NASA una codiciada segunda forma de enviar astronautas al espacio.
Hace dos semanas, la NASA anunciado públicamente que los astronautas veteranos Butch Wilmore y Suni Williams serían la tripulación principal de este vuelo de prueba. La NASA también dijo que una misión de corta duración con dos pilotos de prueba de astronautas es suficiente para cumplir con todos los objetivos de prueba para la prueba de vuelo. Sin embargo, agregó la agencia, esta misión podría extenderse o acortarse según las necesidades de personal de la estación. Por ejemplo, la NASA dijo que incluso podría agregar un astronauta y extender la misión si surgiera la necesidad.
Sin embargo, según los horarios internos de la NASA, parece que la agencia podría optar por un viaje más corto de seis días. Según un cronograma revisado esta semana, el vuelo de prueba de Starliner mostró una fecha de lanzamiento para el 8 de diciembre, con un acoplamiento posterior a la estación espacial del 9 al 14 de diciembre.
Esta fecha está lejos de estar grabada en piedra. Está sujeto a ajustes por una variedad de razones, incluida la revisión en curso de los datos del primer vuelo de prueba de Starliner en mayo, así como la disponibilidad del puerto de acoplamiento en la estación espacial. Sin embargo, el hecho de que tal fecha ahora aparezca en el calendario indica una posibilidad razonable de que Starliner realice un segundo vuelo este año.
Un portavoz de la NASA, Josh Finch, dijo que la agencia no estaba lista para establecer oficialmente una fecha de lanzamiento para la prueba de vuelo de la tripulación de Boeing.
«Boeing está trabajando para tener el hardware listo para la prueba de vuelo tripulado de la compañía este año», dijo Finch. «El equipo de Starliner está en el proceso de proporcionar los primeros datos de prueba de vuelo sin tripulación a la NASA y determinar conjuntamente el trabajo por delante antes del vuelo tripulado. Las revisiones de ingeniería y programas continúan, culminando en una evaluación del calendario de lanzamiento a fines de julio basado en preparación de la nave espacial, necesidades de planificación de la estación espacial y disponibilidad del rango oriental”.
Después de esa evaluación, dijo Finch, la NASA planea proporcionar una actualización de estado, que probablemente incluirá un objetivo de lanzamiento.
Uno de los principales factores es la disponibilidad del puerto de atraque. Hay dos puertos en la estación espacial equipados con un «adaptador de acoplamiento internacional» y deben ser compartidos por Crew Dragon, Cargo Dragon 2 y SpaceX’s Starliner. Este verano y otoño, la NASA actualmente tiene tres vuelos de misión SpaceX que utilizarán estos puertos: las misiones de carga CRS-25 y -26 y el lanzamiento de Crew-5. Actualmente, sin embargo, un puerto de atraque está disponible desde el 1 de diciembre hasta el 14 de enero. Después de eso, la misión de carga CRS-27 de SpaceX necesitaría el puerto de repuesto.
Suponiendo que no haya más retrasos importantes en el lanzamiento de los vehículos SpaceX y suponiendo que Starliner obtenga un buen estado de salud a partir de su revisión de los datos, esta ventana probablemente coincida cuando Boeing y la NASA opten por el próximo vuelo de Starliner.
Reconstrucción de un artista de Ailurarctos de Shuitangba. La función de agarre de su pulgar falso (que se muestra en el individuo de la derecha) ha alcanzado el nivel de los pandas modernos, mientras que el sesamoideo radial puede haber sobresalido un poco más que su contraparte moderna al caminar (visto en el individuo de la izquierda). Crédito: Ilustración de Mauricio Antón
¿Comer bambú? Todo está en la muñeca.
¿Cuándo una pulgada no es realmente una pulgada? Cuando es un hueso alargado de la muñeca del panda gigante el que se usa para agarrar el bambú. En su larga historia evolutiva, la mano del panda nunca ha desarrollado un pulgar verdaderamente oponible. En cambio, desarrolló un dedo similar a un pulgar a partir de un hueso de la muñeca, el sesamoideo radial. Esta adaptación única ayuda a estos osos a subsistir completamente con bambú a pesar de ser osos (miembros del orden Carnivora, o carnívoros).
En un nuevo artículo publicado hoy (30 de junio de 2022), los científicos informan sobre el descubrimiento del primer panda ancestral que se alimenta de bambú y tiene este «pulgar». Sorprendentemente, es más largo que sus descendientes modernos. La investigación fue dirigida por el curador de paleontología de vertebrados del condado de Los Ángeles, Xiaoming Wang, y sus colegas.
Mientras que el famoso pulgar falso de los pandas gigantes contemporáneos (Ailuropoda melanoleuca) se conoce desde hace más de 100 años, no se ha entendido cómo evolucionó este hueso de la muñeca debido a una ausencia casi total de fósiles. Un pulgar falso fósil de un panda gigante ancestral, ailurarctos, que data de hace 6 a 7 millones de años fue descubierto en el sitio de Shuitangba en la ciudad de Zhaotong, en la provincia de Yunnan, en el sur de China. Brinda a los científicos un primer vistazo al uso temprano de este dígito adicional (sexto), y la primera evidencia de una dieta de bambú en los pandas ancestrales, lo que nos ayuda a comprender mejor la evolución de esta estructura única.
Panda de Chengdu comiendo bambú. Crédito: Reproducción de la foto cortesía de Sharon Fisher
«En lo profundo del bosque de bambú, los pandas gigantes intercambiaron una dieta omnívora de carne y bayas para consumir tranquilamente bambú, una planta abundante en el bosque subtropical pero de bajo valor nutricional», dice el curador Dr. Xiaoming Wang. de NHM Vertebrate Paleontology. “Sostener los tallos de bambú con fuerza para triturarlos en pedazos del tamaño de un bocado es quizás la adaptación más crucial para consumir una cantidad prodigiosa de bambú”.
Cómo caminar y masticar bambú al mismo tiempo
El descubrimiento también podría ayudar a resolver un misterio persistente sobre los pandas: ¿por qué sus pulgares falsos parecen tan subdesarrollados? Como antepasado de los pandas modernos, ailurarctos Uno podría esperar que tuvieran ‘pulgares’ falsos aún menos desarrollados, pero el fósil que encontraron Wang y sus colegas reveló un pulgar falso más largo con un extremo más recto que el dedo ganchudo más corto de sus descendientes modernos. Entonces, ¿por qué los pulgares falsos de los pandas dejaron de crecer a un número mayor?
«El pulgar falso de Panda tiene que caminar y ‘masticar'», dice Wang. «Tal función dual sirve como un límite de cuán grande puede llegar a ser ese ‘pulgar'».
Panda agarrar vs caminar (el hueso blanco es el pulgar falso). Crédito: Cortesía del Museo de Historia Natural del Condado de Los Ángeles
Wang y sus colegas creen que los pulgares falsos más cortos del panda moderno son un compromiso evolutivo entre la necesidad de manipular el bambú y la necesidad de caminar. La punta en forma de gancho del segundo pulgar de un panda moderno le permite manipular el bambú mientras le permite llevar su impresionante peso hasta la próxima comida de bambú. Después de todo, el «pulgar» realiza una doble función como sesamoideo radial: un hueso en la muñeca del animal.
«De cinco a seis millones de años debería ser tiempo suficiente para que el panda desarrollara pulgares falsos más largos, pero parece que la presión evolutiva de la necesidad de viajar y soportar peso mantuvo el ‘pulgar’ corto, lo suficientemente fuerte como para ser útil sin ser lo suficientemente grande». . para interponerse en el camino”, dice Denise Su, profesora asociada de la Escuela de Evolución Humana y Cambio Social e investigadora del Instituto de Orígenes Humanos de la Universidad Estatal de Arizona, y codirectora del proyecto que recuperó los especímenes de panda.
«Al evolucionar de un ancestro carnívoro y convertirse en un comedor de bambú puro, los pandas tienen que superar muchos obstáculos», dice Wang. «Un ‘pulgar’ oponible de un hueso de la muñeca puede ser el desarrollo más sorprendente contra estos obstáculos».
Referencia: «El primer pulgar falso del panda gigante sugiere demandas conflictivas de locomoción y alimentación» por Xiaoming Wang, Denise F. Su, Nina G. Jablonski, Xueping Ji, Jay Kelley, Lawrence J. Flynn y Tao Deng, 30 de junio de 2022, Informes científicos. DOI: 10.1038/s41598-022-13402-y
Los autores de este artículo están afiliados al Museo de Historia Natural del Condado de Los Ángeles, Los Ángeles, CA, EE. UU.; Instituto de Paleontología y Paleoantropología de Vertebrados, Academia China de Ciencias, Beijing, China; Universidad Estatal de Arizona, Tempe, Arizona, EE. UU.; Universidad Estatal de Pensilvania, University Park, Pensilvania, EE. UU.; Instituto de Zoología de Kunming, Academia China de Ciencias, Kunming, Yunnan, China; Instituto de Yunnan de Reliquias Culturales y Arqueología, Kunming, Yunnan, China; Universidad de Harvard, Cambridge, Massachusetts, Estados Unidos.
La financiación fue proporcionada por la Fundación Nacional de Ciencias de los Estados Unidos, la Fundación de Ciencias Naturales de Yunnan, la Fundación Nacional de Ciencias Naturales de China, los gobiernos de Zhaotong y Zhaoyang, el Instituto de Paleontología y Paleoantropología de vertebrados.