Connect with us

Horoscopo

¿Qué hora es en la Luna? Avanzando una nueva zona horaria lunar

Published

on

¿Qué hora es en la Luna?  Avanzando una nueva zona horaria lunar

Una imagen de alta definición de la Tierra tomada por el orbitador lunar Kaguya de Japón en noviembre de 2007. Crédito: JAXA/NHK

Una nueva era de exploración lunar está en ascenso, con docenas de misiones lunares planificadas para la próxima década. Europa está a la vanguardia aquí, contribuyendo a la construcción de la estación lunar Gateway y la nave espacial Orion, destinada a llevar a los humanos de regreso a nuestro satélite natural, así como al desarrollo de su gran módulo de aterrizaje lunar logístico, conocido bajo el nombre de Argonaut. Dado que docenas de misiones operarán en la Luna y sus alrededores y deberán comunicarse entre sí y fijar sus posiciones independientemente de la Tierra, esta nueva era requerirá su propio tiempo.

Como resultado, las organizaciones espaciales comenzaron a pensar en cómo mantener el tiempo en la Luna. Habiendo comenzado con una reunión en el Centro de Tecnología ESTEC de la ESA en los Países Bajos en noviembre pasado, la discusión es parte de un esfuerzo más amplio para llegar a un entendimiento común.LunaNetarquitectura que cubre los servicios de comunicación y navegación lunares.

Escenario de la superficie lunar

Impresión artística de un escenario de exploración lunar. Crédito: ESA–ATG

Arquitectura para la Exploración Lunar Conjunta

«LunaNet es un marco de estándares, protocolos y requisitos de interfaz mutuamente acordados para que futuras misiones lunares trabajen juntas, conceptualmente similar a lo que hemos hecho en la Tierra para el uso conjunto de[{» attribute=»»>GPS and Galileo,” explains Javier Ventura-Traveset, ESA’s Moonlight Navigation Manager, coordinating ESA contributions to LunaNet. “Now, in the lunar context, we have the opportunity to agree on our interoperability approach from the very beginning, before the systems are actually implemented.”

Timing is a crucial element, adds ESA navigation system engineer Pietro Giordano: “During this meeting at ESTEC, we agreed on the importance and urgency of defining a common lunar reference time, which is internationally accepted and towards which all lunar systems and users may refer to. A joint international effort is now being launched towards achieving this.”

European Service Module Flies by Moon

On the 20th day of the Artemis I mission, Orion captures the Moon during its lunar flyby. The image was taken by a camera mounted on the European Service Module solar array wings, on December 5, 2022. Credit: NASA

Up until now, each new mission to the Moon is operated on its own timescale exported from Earth, with deep space antennas used to keep onboard chronometers synchronized with terrestrial time at the same time as they facilitate two-way communications. This way of working will not be sustainable however in the coming lunar environment.

Once complete, the Gateway station will be open to astronaut stays, resupplied through regular NASA Artemis launches, progressing to a human return to the lunar surface, culminating in a crewed base near the lunar south pole. Meanwhile, numerous uncrewed missions will also be in place – each Artemis mission alone will release numerous lunar CubeSats – and ESA will be putting down its Argonaut European Large Logistics Lander.

Gateway Over Moon

Artist’s impression of the lunar Gateway, a habitat, refueling, and research center for astronauts exploring our Moon as part of the Artemis program. Credit: NASA/Alberto Bertolin

These missions will not only be on or around the Moon at the same time, but they will often be interacting as well – potentially relaying communications for one another, performing joint observations or carrying out rendezvous operations.

Moonlight satellites on the way

“Looking ahead to lunar exploration of the future, ESA is developing through its Moonlight program a lunar communications and navigation service,” explains Wael-El Daly, system engineer for Moonlight. “This will allow missions to maintain links to and from Earth, and guide them on their way around the moon and on the surface, allowing them to focus on their core tasks. But also, Moonlight will need a shared common timescale in order to get missions linked up and to facilitate position fixes.”

Moonlight Navigation for the Moon Infographic

ESA’s Moonlight initiative involves expanding satnav coverage and communication links to the Moon. The first stage involves demonstrating the use of current satnav signals around the Moon. This will be achieved with the Lunar Pathfinder satellite in 2024. The main challenge will be overcoming the limited geometry of satnav signals all coming from the same part of the sky, along with the low signal power. To overcome that limitation, the second stage, the core of the Moonlight system, will see dedicated lunar navigation satellites and lunar surface beacons providing additional ranging sources and extended coverage. Credit: ESA-K Oldenburg

And Moonlight will be joined in lunar orbit by an equivalent service sponsored by NASA – the Lunar Communications Relay and Navigation System. To maximize interoperability these two systems should employ the same timescale, along with the many other crewed and uncrewed missions they will support.

Fixing time to fix position

Jörg Hahn, ESA’s chief Galileo engineer and also advising on lunar time aspects comments: “Interoperability of time and geodetic reference frames has been successfully achieved here on Earth for Global Navigation Satellite Systems; all of today’s smartphones are able to make use of existing GNSS to compute a user position down to a meter or even decimeter level.

Orion Far Side of Moon

Picture of the far side of the Moon taken on flight day six of the Artemis I mission from the Orion spacecraft optical navigation camera. Credit: NASA

“The experience of this success can be re-used for the technical long-term lunar systems to come, even though stable timekeeping on the Moon will throw up its own unique challenges – such as taking into account the fact that time passes at a different rate there due to the Moon’s specific gravity and velocity effects.”

Setting global time

Accurate navigation demands rigorous timekeeping. This is because a satnav receiver determines its location by converting the times that multiple satellite signals take to reach it into measures of distance – multiplying time by the speed of light.

How Satnav Works

Your satnav receiver needs a minimum of four satellites in the sky, their onboard clocks synchronized and orbital positions monitored by global ground segments. It picks up signals from each satellite, which each incorporate a precise time stamp.
By calculating the length of time it takes for each signal to reach your receiver, the receiver builds up a three-dimensional picture of your position – longitude, latitude, and altitude – relative to the satellites. Future receivers will be able to track Galileo satellites in addition to US and Russian navigation satellites, providing meter-scale positioning accuracy almost anywhere on or even off Earth: satnav is also heavily used by satellites.
Credit: ESA

All the terrestrial satellite navigation systems, such as Europe’s Galileo or the United States’ GPS, run on their own distinct timing systems, but these possess fixed offsets relative to each other down to a few billionths of a second, and also to the UTC Universal Coordinated Time global standard.

The replacement for Greenwich Mean Time, UTC is part of all our daily lives: it is the timing used for Internet, banking, and aviation standards as well as precise scientific experiments, maintained by the Paris-based Bureau International de Poids et Mesures (BIPM).

Galileo for Timing

Galileo is based on a worldwide time reference called Galileo System Time (GST), the standard for Europe’s satellite navigation system, kept close to UTC with an accuracy of 28 billionths of a second. Accurate timings enable accurate ranging for position and navigation services, and their dissemination is an important service in its own right. Credit: ESA

The BIPM computes UTC based on inputs from collections of atomic clocks maintained by institutions around the world, including ESA’s ESTEC technical center in Noordwijk, the Netherlands, and the ESOC mission control center in Darmstadt, Germany.

Designing lunar chronology

Among the current topics under debate is whether a single organization should similarly be responsible for setting and maintaining lunar time. And also, whether lunar time should be set on an independent basis on the Moon or kept synchronized with Earth.

South Pole of Moon Annotated

A mosaic of the south pole of our Moon showing locations of major craters, with images taken by NASA’s Lunar Reconnaissance Orbiter. Credit: NASA/GSFC/Arizona State University

The international team working on the subject will face considerable technical issues. For example, clocks on the Moon run faster than their terrestrial equivalents – gaining around 56 microseconds or millionths of a second per day. Their exact rate depends on their position on the Moon, ticking differently on the lunar surface than from orbit.

“Of course, the agreed time system will also have to be practical for astronauts,” explains Bernhard Hufenbach, a member of the Moonlight Management Team from ESA’s Directorate of Human and Robotic Exploration. “This will be quite a challenge on a planetary surface where in the equatorial region each day is 29.5 days long, including freezing fortnight-long lunar nights, with the whole of Earth just a small blue circle in the dark sky. But having established a working time system for the Moon, we can go on to do the same for other planetary destinations.”

Finalmente, para trabajar bien en conjunto, la comunidad internacional también deberá acordar un «marco de referencia selenocéntrico» común, similar al papel que juega en la Tierra el marco de referencia terrestre internacional, que permita la medición consistente de distancias precisas entre puntos en nuestro planeta. . Los marcos de referencia personalizados correctamente son ingredientes esenciales de los sistemas GNSS actuales.

“A lo largo de la historia humana, la exploración ha sido en realidad un factor clave para mejorar los modelos de referencia geodésica y de tiempo”, agrega Javier. “Ciertamente, es un momento emocionante para hacer eso ahora para la Luna, trabajando para definir una escala de tiempo acordada internacionalmente y una referencia selenocéntrica común, que no solo garantizará la interoperabilidad entre los diferentes sistemas de navegación lunar, sino que también promoverá un gran número de oportunidades de investigación y aplicaciones en el espacio cislunar.

READ  El tamaño del agujero negro supermasivo revelado por su modelo de poder

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Algunas de las estrellas más antiguas del Universo acaban de ser descubiertas orbitando la Vía Láctea: ScienceAlert

Published

on

Algunas de las estrellas más antiguas del Universo acaban de ser descubiertas orbitando la Vía Láctea: ScienceAlert

Mencione la Vía Láctea y la mayoría de la gente visualizará una enorme galaxia espiral de miles de millones de años. Se cree que es una galaxia que tomó forma miles de millones de años después del Big Bang. Los estudios realizados por astrónomos han revelado que a nuestro alrededor hay ecos de épocas anteriores.

Un equipo de astrónomos del MIT encontró tres estrellas antiguas que orbitan alrededor del halo de la Vía Láctea. El equipo cree que estas estrellas se formaron cuando el Universo tenía aproximadamente mil millones de años y alguna vez fueron parte de una galaxia más pequeña que fue consumida por la Vía Láctea.

La Vía Láctea es nuestra galaxia natal, dentro de la cual se encuentra todo nuestro sistema solar y alrededor de 400 mil millones de estrellas más. Mide 100.000 años luz de lado a lado y alberga casi todo lo que podemos ver en el cielo a simple vista.

Los astrónomos del MIT han descubierto tres de las estrellas más antiguas del universo y viven en nuestro propio vecindario galáctico. Las estrellas se encuentran en el «halo» de la Vía Láctea, la nube de estrellas que envuelve el disco galáctico principal, y parecen haberse formado hace entre 12 y 13 mil millones de años, cuando estaban tomando forma las primeras galaxias. (Serge Brunier/NASA)

En una noche clara y oscura, podemos ver la luz combinada de todas las estrellas de la galaxia formando una maravillosa banda de luz nebulosa que cruza el cielo de horizonte a horizonte. Si pudieras ver la galaxia desde fuera, su forma ancha parecería dos huevos fritos pegados espalda con espalda.

La historia del descubrimiento nos lleva al año 2022 durante un nuevo curso de arqueología estelar observacional en el MIoT, cuando los estudiantes aprendían a analizar estrellas antiguas.

Luego los aplicaron a estrellas que aún no han sido analizadas. Trabajaron con datos del telescopio Magellan-Clay de 6,5 m en el Observatorio Las Campanas y buscaban estrellas que se formaron poco después del Big Bang.

READ  Jim Kitchen sobre volar al espacio en un vuelo de Blue Origin y más - Robb Report

En este momento de la evolución del Universo, había principalmente hidrógeno y helio con trazas de estroncio y bario. Entonces el equipo buscó estrellas cuyos espectros indicaran estos elementos.

La fabricación de precisión es el corazón del Telescopio Gigante de Magallanes. La superficie de cada espejo debe pulirse hasta una fracción de la longitud de onda de la luz. (Organización del Telescopio Gigante de Magallanes)

Se centraron en solo tres estrellas observadas en 2013 y 2014, pero no habían sido analizadas antes y, por lo tanto, constituyeron un excelente estudio para los estudiantes.

Al final de su análisis (que tomó varios cientos de horas en la computadora), el equipo identificó que las estrellas tenían niveles muy bajos de estroncio y bario, como se esperaba si fueran estrellas antiguas.

Se estima que las estrellas estudiadas se formaron hace entre 12 y 13 mil millones de años. Lo que no estaba claro era el origen de las estrellas. ¿Cómo llegaron a la Vía Láctea si era relativamente nueva y joven?

El equipo decidió analizar las características orbitales de las estrellas para ver cómo se movían. Todas las estrellas estaban en diferentes lugares del halo de la Vía Láctea y todas estarían ubicadas a unos 30.000 años luz de la Tierra.

Comparando el movimiento con los datos del satélite astrométrico Gaia, descubrieron que las estrellas se movían en dirección opuesta a la mayoría de las otras estrellas de la Vía Láctea. A esto lo llamamos movimiento retrógrado y sugiere que las estrellas vinieron de otro lugar y no se formaron con la Vía Láctea.

Las firmas químicas de las estrellas, combinadas con su movimiento, dan gran credibilidad a la probabilidad de que estas antiguas estrellas no se hayan originado en la Vía Láctea.

Ahora que han desarrollado su método para identificar estrellas antiguas, los estudiantes quieren ampliar su búsqueda para ver si se pueden localizar otras.

READ  Horóscopo para octubre de 2020 Libra: dinero, trabajo, salud, amor y suerte

Sin embargo, con 400 mil millones de estrellas en la Vía Láctea, aún queda por encontrar un método un poco más eficiente.

Este artículo fue publicado originalmente por El universo hoy. Léelo artículo original.

Continue Reading

Horoscopo

La enorme mancha solar que provocó auroras generalizadas en la Tierra ahora apunta a Marte

Published

on

La enorme mancha solar que provocó auroras generalizadas en la Tierra ahora apunta a Marte

Sí, la bestial mancha solar AR3664 vuelve a ser noticia.

Aunque la mancha solar ha desaparecido de nuestro campo de visión, sigue siendo un punto caliente, ya que provocó su llamarada solar más fuerte hasta la fecha el martes 14 de mayo. Cualquier explosión de plasma solar y campo magnético, conocidas como eyecciones de masa coronal, de AR3664 ahora se dirigirá lejos de la Tierra, pero los científicos dicen que hay otro planeta que podría experimentar los impactos de esta enorme mancha solar: Marte.

Continue Reading

Horoscopo

China lanza un nuevo y misterioso satélite Shiyan (vídeo)

Published

on

China lanza un nuevo y misterioso satélite Shiyan (vídeo)

China lanzó este fin de semana el último de su serie secreta de satélites Shiyan.

Un cohete Larga Marcha 4C despegó del Centro de Lanzamiento de Satélites de Jiuquan en el desierto de Gobi, en el noroeste de China, a las 7:43 p. m. EDT del 11 de mayo (11:43 p. m. GMT, o 7:43 a. m. de Beijing, 12 de mayo). autoridades chinas reveló la carga útil de la misión será Shiyan-23 una vez que el lanzamiento se declare exitoso.

Continue Reading

Trending