Connect with us

Horoscopo

¿Qué causa los diferentes colores de las auroras? Un experto explica el arcoíris eléctrico

Published

on

¿Qué causa los diferentes colores de las auroras?  Un experto explica el arcoíris eléctrico

La semana pasada, una erupción solar masiva envió una ola de partículas energéticas del Sol al espacio. Durante el fin de semana, la ola llegó a la Tierra y personas de todo el mundo pudieron ver auroras inusualmente vívidas en ambos hemisferios.

Aunque la aurora normalmente sólo es visible cerca de los polos, fue vista este fin de semana. tan al sur como Hawaii en el hemisferio norte y tan al norte como Mackay En el sur.

Este espectacular pico de actividad auroral parece haber terminado, pero no te preocupes si te lo perdiste. El Sol se acerca a su punto máximo Ciclo de manchas solares de 11 añosy se espera que regresen períodos de intensa aurora durante el próximo año.

Si viste la aurora o alguna de las fotos, quizás te preguntes qué estaba pasando exactamente. ¿Qué hace que el brillo y los diferentes colores? La respuesta está en los átomos, en cómo se excitan y cómo se relajan.

Cuando los electrones se encuentran con la atmósfera.

Las auroras son causadas por partículas subatómicas cargadas (principalmente electrones) que chocan contra la atmósfera terrestre. Estos son emitidos por el Sol constantemente, pero son más numerosos durante los periodos de mayor actividad solar.

La mayor parte de nuestra atmósfera está protegida de la entrada de partículas cargadas por el campo magnético de la Tierra. Pero cerca de los polos, pueden colarse y causar estragos.

La atmósfera terrestre contiene aproximadamente un 20% de oxígeno y un 80% de nitrógeno, con algunas trazas de otros elementos como agua, dióxido de carbono (0,04%) y argón.

La aurora de mayo de 2024 también fue visible en la región de Emilia-Romaña en el norte de Italia.
Luca Argalia/Flickr, CC BY-NC-SA

Cuando los electrones de alta velocidad chocan con moléculas de oxígeno en la atmósfera superior, dividen las moléculas de oxígeno (O₂) en átomos individuales. La luz ultravioleta del Sol también hace esto, y los átomos de oxígeno generados pueden reaccionar con las moléculas de O₂ para producir ozono (O₃), la molécula que nos protege de los dañinos rayos UV.

READ  El cohete SpaceX Falcon 9 lanza 2 satélites militares alemanes

Pero en el caso de la aurora boreal, los átomos de oxígeno generados están en un estado excitado. Esto significa que los electrones de los átomos están dispuestos de forma inestable y pueden “relajarse” liberando energía en forma de luz.

¿Qué da luz verde?

Como se ve en los fuegos artificiales, los átomos de diferentes elementos producen diferentes colores de luz cuando se les activa.

Los átomos de cobre dan luz azul, el bario es verde y los átomos de sodio producen un color amarillo anaranjado que quizás también hayas visto en las antiguas farolas de la calle. Estas emisiones están «permitidas» por las reglas de la mecánica cuántica, lo que significa que ocurren muy rápidamente.

Cuando un átomo de sodio está en estado excitado, sólo permanece allí durante unas 17 milmillonésimas de segundo antes de emitir un fotón de color amarillo anaranjado.

Pero, en la aurora boreal, muchos átomos de oxígeno se crean en estados excitados sin ninguna forma «permitida» de relajarse emitiendo luz. Sin embargo, la naturaleza encuentra un camino.

Un cielo nocturno moteado con luces verdes brillantes y rayas rosadas sobre ellas.
Aurora australis visible desde Oatlands, Tasmania, el 11 de mayo de 2024.
Imagen AAP/Ethan James

La luz verde que domina la aurora es emitida por átomos de oxígeno que se relajan desde un estado llamado “¹S” a un estado llamado “¹D”. Este es un proceso relativamente lento, que toma en promedio casi un segundo completo.

De hecho, esta transición es tan lenta que generalmente no ocurrirá con el tipo de presión atmosférica que vemos a nivel del suelo, porque el átomo excitado habrá perdido energía al chocar con otro átomo antes de que tenga la oportunidad de enviar un bonito mensaje verde. fotón. Pero en las capas superiores de la atmósfera, donde la presión atmosférica es menor y por tanto hay menos moléculas de oxígeno, tienen más tiempo antes de chocar y por tanto tienen posibilidades de liberar un fotón.

READ  Horóscopo del 26 de noviembre de 2020 | Pura armonía y buena energía | Horóscopos

Por esta razón, los científicos tardaron mucho en comprender que la luz verde de las auroras provenía de átomos de oxígeno. El brillo amarillo anaranjado del sodio se conoció en la década de 1860, pero no fue hasta la década de 1920 que científicos canadienses Entendí que el verde de la aurora se debía al oxígeno.

¿Qué hace la luz roja?

La luz verde proviene de la llamada transición «prohibida», que ocurre cuando un electrón en el átomo de oxígeno realiza un salto improbable de un patrón orbital a otro. (Las transiciones prohibidas son mucho menos probables que las permitidas, lo que significa que tardan más en ocurrir).

Sin embargo, incluso después de emitir este fotón verde, el átomo de oxígeno se encuentra en otro estado excitado sin posibilidad de relajación. La única salida es a través de otra transición prohibida, del estado ¹D al estado ³P, que emite una luz roja.

Esta transición está además prohibida, por así decirlo, y el estado ¹D debe sobrevivir durante unos dos minutos antes de que finalmente pueda romper las reglas y emitir una luz roja. Debido al tiempo necesario, la luz roja sólo aparece a grandes altitudes, donde las colisiones con otros átomos y moléculas son raras.

Además, debido a que hay muy poco oxígeno allí arriba, la luz roja tiende a aparecer sólo durante auroras intensas, como las que acabamos de tener.

Por eso la luz roja aparece encima de la verde. Aunque ambas surgen de relajaciones prohibidas de los átomos de oxígeno, la luz roja se emite mucho más lentamente y es más probable que se apague por colisiones con otros átomos en altitudes más bajas.

READ  Qué saber sobre el Centro Espacial de Houston antes de visitarlo

Otros colores y por qué las cámaras los ven mejor

Aunque el verde es el color más común en las auroras boreales y el rojo es el segundo color más común, también hay otros colores. En particular, las moléculas de nitrógeno ionizado (N₂⁺, a las que les falta un electrón y tienen una carga eléctrica positiva) pueden emitir luz azul y roja. Esto puede producir un tinte magenta en altitudes bajas.

Todos estos colores son visibles a simple vista si la aurora es lo suficientemente brillante. Sin embargo, aparecen con más intensidad en el objetivo de la cámara.

Hay dos razones para esto. En primer lugar, las cámaras se benefician de una exposición prolongada, lo que significa que pueden dedicar más tiempo a recoger luz para producir una imagen que nuestros ojos. Como resultado, pueden tomar una imagen en condiciones más oscuras.

La segunda es que los sensores de color de nuestros ojos no funcionan muy bien en la oscuridad, por lo que tendemos a ver en blanco y negro en condiciones de poca luz. Las cámaras no tienen esta limitación.

Pero no te preocupes. Cuando la aurora es lo suficientemente brillante, los colores son claramente visibles a simple vista.



Leer más: ¿Qué son las auroras boreales y por qué vienen en diferentes formas y colores? Dos expertos explican


Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

La NASA está cerca de tomar una decisión sobre el destino de la nave espacial Starliner de Boeing

Published

on

La NASA está cerca de tomar una decisión sobre el destino de la nave espacial Starliner de Boeing
Agrandar / En esta fotografía tomada el 3 de julio se ve la nave espacial Strainer de Boeing acoplada a la Estación Espacial Internacional.

Los astronautas que abordaron la nave espacial Starliner de Boeing hacia la Estación Espacial Internacional el mes pasado aún no saben cuándo regresarán a la Tierra.

Los astronautas Butch Wilmore y Suni Williams han estado en el espacio durante 51 días, seis semanas más de lo previsto inicialmente, mientras los ingenieros en tierra resuelven problemas con el sistema de propulsión de Starliner.

Los problemas son dobles. Los propulsores de la nave espacial se sobrecalentaron y algunos de ellos se apagaron cuando Starliner se acercó a la estación espacial el 6 de junio. Otro problema, aunque quizás relacionado, son las fugas de helio en el sistema de propulsión del barco.

El jueves, funcionarios de la NASA y Boeing dijeron que todavía planeaban traer a Wilmore y Williams de regreso a bordo de la nave espacial Starliner. Durante las últimas semanas, los equipos de tierra completaron las pruebas de un propulsor en un banco de pruebas en White Sands, Nuevo México. Este fin de semana, Boeing y la NASA planean poner en órbita los propulsores de la nave espacial para comprobar su rendimiento una vez acoplada a la estación espacial.

«Creo que estamos empezando a acercarnos a esas piezas finales de la lógica de vuelo para asegurarnos de que podamos regresar a casa de manera segura, y ese es nuestro enfoque principal en este momento», dijo Stich.

Estos problemas han llevado a especulaciones de que la NASA podría decidir devolver a Wilmore y Williams a la Tierra a bordo de una nave espacial SpaceX Crew Dragon. Actualmente hay un barco Crew Dragon atracado en la estación y se espera que se lance otro con una nueva tripulación el próximo mes. Steve Stich, jefe del programa de tripulación comercial de la NASA, dijo que la agencia ha estudiado planes de respaldo para llevar a la tripulación de Starliner a casa a bordo de una cápsula SpaceX, pero el objetivo principal sigue siendo llevar a los astronautas de regreso a bordo de Starliner.

READ  La Sociedad Espacial Sueca firma un memorando de entendimiento sobre comunicaciones ópticas con Airbus

«Nuestra primera opción es completar la misión», dijo Stich. “Hay muchas buenas razones para completar esta misión y traer a Butch y Suni de regreso a bordo de Starliner. Starliner fue diseñada, como nave espacial, para tener a la tripulación en la cabina. »

El Starliner fue lanzado desde la Estación Espacial de Cabo Cañaveral en Florida el 5 de junio. Wilmore y Williams son los primeros astronautas en volar al espacio a bordo de la cápsula de tripulación comercial de Boeing, y este vuelo de prueba tiene como objetivo allanar el camino para futuros vuelos operativos para rotar tripulaciones de cuatro hacia y desde la Estación Espacial Internacional.

Una vez que la NASA certifique completamente a Starliner para misiones operativas, la agencia tendrá dos naves espaciales amigables para los humanos disponibles para vuelos a la estación. Crew Dragon de SpaceX transporta astronautas desde 2020.

Pruebas, pruebas y más pruebas.

La NASA extendió la duración del vuelo de prueba de Starliner para realizar pruebas y analizar datos en un esfuerzo por generar confianza en la capacidad de la nave espacial para llevar a su tripulación a casa de manera segura y comprender mejor las causas profundas del sobrecalentamiento de los propulsores y las fugas de helio. Estos problemas se encuentran dentro del módulo de servicio Starliner, que se desecha para quemarse en la atmósfera al reingresar, mientras que el módulo de tripulación reutilizable, con los astronautas dentro, se lanza en paracaídas para un aterrizaje amortiguado por una bolsa de aire.

La más importante de estas pruebas consistió en una serie de disparos de prueba de un propulsor Starliner en tierra. Este propulsor se tomó de un conjunto de hardware planeado para volar en una futura misión Starlink, y los ingenieros lo sometieron a una prueba de esfuerzo, tirando de él repetidamente para replicar la secuencia de pulsos que vería en vuelo. Las pruebas simularon dos secuencias de vuelo a la estación espacial y cinco secuencias que realizaría el propulsor durante el desacoplamiento y la salida de órbita para regresar a la Tierra.

READ  ¿Cuál será nuestro destino el 16 y 22 de noviembre?

«Este propulsor ha sufrido una serie de pulsaciones, quizás incluso más de las que anticiparíamos en vuelo, y más agresivas en términos de dos ascensos y cinco descensos», dijo Stich. “Lo que observamos en el propulsor es el mismo tipo de degradación del empuje que observamos en órbita. En varios propulsores (en Starliner) vemos un empuje reducido, lo cual es importante. »

La computadora de vuelo de Starliner apagó cinco de los 28 propulsores del sistema de control de reacción de la nave espacial, producidos por Aerojet Rocketdyne, durante su encuentro con la estación espacial el mes pasado. Cuatro de los cinco propulsores se recuperaron después de sobrecalentarse y perder empuje, pero los funcionarios declararon que uno de los propulsores era inutilizable.

El propulsor probado en tierra mostró un comportamiento similar. Las inspecciones del propulsor en White Sands mostraron hinchazón en un sello de teflón de una válvula oxidante, lo que podría restringir el flujo del propulsor de tetróxido de nitrógeno. Los propulsores, cada uno de los cuales genera alrededor de 85 libras de empuje, consumen el oxidante de tetróxido de nitrógeno, o NTO, y lo mezclan con combustible de hidracina para la combustión.

Una válvula de mariposa, similar a la válvula de inflado de un neumático, está diseñada para abrirse y cerrarse para permitir que el tetróxido de nitrógeno fluya hacia el propulsor.

«Esta válvula tiene un sello de teflón en el extremo», explicó Nappi. “Bajo el efecto del calor y el vacío natural que se produce cuando se dispara el propulsor, esta junta se deformó e incluso se abombó ligeramente. »

READ  Las galaxias distantes se alinean para apoyar la relatividad general de Einstein

Stich dijo que los ingenieros están evaluando la integridad del sello de teflón para determinar si podría permanecer intacto durante el desacoplamiento y la salida de órbita de la nave espacial Starliner. No se necesitan propulsores mientras Starliner está conectado a la estación espacial.

“¿Podría esta foca en particular sobrevivir el resto del vuelo?” Esa es la parte importante”, dijo Stich.

Continue Reading

Horoscopo

El descubrimiento de restos de un virus antiguo gigante ofrece nuevas pistas sobre los orígenes de la vida compleja

Published

on

El descubrimiento de restos de un virus antiguo gigante ofrece nuevas pistas sobre los orígenes de la vida compleja

Un nuevo estudio ha descubierto que el código genético del Amoebidium unicelular contiene restos de antiguos virus gigantes, lo que proporciona información sobre la evolución genética de la vida compleja. Este hallazgo revela que estos genes virales, aunque potencialmente dañinos, se mantienen inactivos mediante procesos químicos dentro del ADN de Amoebidium, lo que sugiere una relación más compleja entre los virus y sus huéspedes, lo que podría afectar nuestra comprensión de la evolución genética de otros organismos, incluidos los humanos.

Los microorganismos revelan cómo nuestros predecesores unicelulares incorporaron ADN viral en sus propios genomas.

Los investigadores han descubierto restos de antiguos virus gigantes en el genoma de Amoebidium, un organismo unicelular, lo que sugiere que dichas secuencias virales pueden haber desempeñado un papel en la evolución de formas de vida complejas. Este estudio destaca la relación dinámica entre los virus y sus huéspedes, que también refleja la genética humana.

Un nuevo estudio publicado en la revista científica ha descubierto un giro sorprendente en la historia evolutiva de la vida compleja. Avances científicosInvestigadores de la Universidad Queen Mary de Londres han descubierto que un organismo unicelular, estrechamente relacionado con los animales, contiene restos de antiguos virus gigantes en su código genético. Este descubrimiento proporciona una mejor comprensión de cómo los organismos complejos pudieron adquirir algunos de sus genes y destaca la interacción dinámica entre los virus y sus huéspedes.

El estudio se centró en un microbio llamado Amoebidium, un parásito unicelular que se encuentra en ambientes de agua dulce. Al analizar el genoma de Amoebidium, los investigadores dirigidos por el Dr. Alex de Mendoza Soler, profesor titular de la Escuela de Ciencias Biológicas y del Comportamiento de Queen Mary, descubrieron una sorprendente abundancia de material genético de virus gigantes, algunos de los virus más grandes conocidos por la ciencia. Estas secuencias virales estaban fuertemente metiladas, una etiqueta química que a menudo silencia los genes.

READ  Horóscopo del 26 de noviembre de 2020 | Pura armonía y buena energía | Horóscopos

«Es como encontrar caballos de Troya escondidos dentro del Amoebidium ADN«Estas inserciones virales son potencialmente peligrosas, pero Amoebidium parece controlarlas silenciándolas químicamente», explica el Dr. de Mendoza Soler.


El microbio Amoebidium appalachense vive su ciclo de desarrollo en el laboratorio. Los núcleos se dividen dentro de una célula hasta la madurez (~40 h en el video), cuando cada núcleo se convierte en una sola célula y la colonia se rompe dando lugar a la descendencia. Crédito: Álex de Mendoza

Investigación actual e implicaciones.

Luego, los investigadores estudiaron el alcance de este fenómeno. Compararon los genomas de varios aislados de Amoebidium y encontraron una variación significativa en el contenido viral. Esto sugiere que el proceso de integración y silenciamiento viral es continuo y dinámico.

«Estos resultados desafían nuestra comprensión de la relación entre los virus y sus huéspedes», afirma el Dr. de Mendoza Soler. “Tradicionalmente, los virus se consideran invasores, pero este estudio sugiere una historia más compleja. Las inserciones virales pueden haber desempeñado un papel en la evolución de organismos complejos al proporcionarles nuevos genes. Y esto es posible gracias a la domesticación química del ADN de estos intrusos. »

Células de Amoebidium apalachense

Células de Amoebidium appalachense teñidas para detectar ADN (en azul, que muestra el núcleo) y actina (en verde), resaltando las membranas celulares en la etapa de celularización de la colonia. Crédito: Álex de Mendoza

Además, los descubrimientos realizados sobre Amoebidium ofrecen paralelos intrigantes con la forma en que nuestros propios genomas interactúan con los virus. Al igual que Amoebidium, los humanos y otros mamíferos tienen restos de virus antiguos, llamados retrovirus endógenos, incrustados en su ADN. Si bien estos restos se consideraban anteriormente “ADN basura” inactivo, ahora algunos pueden ser beneficiosos. Sin embargo, a diferencia de los virus gigantes que se encuentran en Amoebidium, los retrovirus endógenos son mucho más pequeños y el genoma humano es significativamente más grande. Investigaciones futuras pueden explorar estas similitudes y diferencias para comprender la compleja interacción entre virus y formas de vida complejas.

READ  Rusia lanza la nave espacial Soyuz "Rescue" a la estación espacial

Referencia: “La metilación del ADN permite la endogenización recurrente de virus gigantes en un animal relacionado” por Luke A. Sarre, Iana V. Kim, Vladimir Ovchinnikov, Marine Olivetta, Hiroshi Suga, Omaya Dudin, Arnau Sebé-Pedrós y Alex de Mendoza, 12 de julio , 2024, Avances científicos.
DOI: 10.1126/sciadv.ado6406

Continue Reading

Horoscopo

Estas imágenes en primer plano del Sol son tan locas que no creerás lo que ven tus ojos.

Published

on

Estas imágenes en primer plano del Sol son tan locas que no creerás lo que ven tus ojos.

Algunos astrofotógrafos saben cuándo han logrado una fotografía increíble, y Mark Johnston, que también es embajador del Sistema Solar de la NASA, logró capturar una fotografía del Sol desde su patio trasero en Arizona. Johnston compartió la imagen con El mundo de las cámaras digitales.y son tan detallados que casi parecen generados por computadora.

Debes saber que tomar imágenes del Sol puede resultar complicado. De hecho, incluso mirar la estrella de nuestro sistema solar a través de la lente de una cámara puede resultar extremadamente peligroso. Por lo tanto, tomar fotografías detalladas como las que aparecen en el portafolio de Johnston requiere tener el equipo adecuado y buen ojo para los detalles.

Actualmente nos encontramos en medio de lo que los científicos llaman máximo solar, que es cuando el Sol está más activo. Esto significa muchas manchas solares y eventos solares como eyecciones de masa coronal y erupciones solares. Esto también significa muchas oportunidades para tomar excelentes fotografías del Sol.

Una fotografía extremadamente detallada del Sol tomada por una sonda espacial. Fuente de la imagen: NSO/AURA/NSF

Las imágenes que Johnston capturó esta vez son nada menos que excepcionales, y el paisaje de Arizona proporciona una vista clara de la estrella que orbita nuestro planeta. Y, debido a que su ubicación particular es en las montañas de Arizona, es capaz de mirar la atmósfera sin tener que hacer tanto esfuerzo.

Esto genera algunas tomas increíbles, y es realmente difícil mirar estas fotografías del Sol sin sentir que estás mirando material promocional generado por computadora. La cantidad de detalles aquí es notable y ciertamente se necesitó un telescopio particularmente poderoso para lograrlo.

READ  Las galaxias distantes se alinean para apoyar la relatividad general de Einstein

Hemos visto imágenes del Sol igualmente detalladas de otros astrofotógrafos, y Johnston se une a las filas de aquellos que han logrado capturar la estrella central de nuestro sistema solar con una luz que de otro modo no podríamos percibir. Los físicos antiguos sólo podían haber soñado con ver el Sol con tanto detalle.

Continue Reading

Trending