Connect with us

Horoscopo

Los resultados del experimento subterráneo profundo confirman una anomalía: posible nueva física fundamental

Published

on

Los nuevos resultados del Experimento de transiciones estériles de Baksan (BEST) confirman una anomalía que sugiere una nueva posibilidad física.

Neutrino estéril, fundamentos de la física entre las interpretaciones de resultados anormales.

Nuevos resultados científicos confirman una anomalía observada en experimentos anteriores, que podría apuntar a una nueva partícula elemental aún no confirmada, el neutrino estéril, o indicar la necesidad de una nueva interpretación de un aspecto de física de modelos estándar, como la sección transversal de neutrinos, medida por primera vez hace 60 años. El Laboratorio Nacional de Los Álamos es la principal institución estadounidense que colabora en el experimento Baksan Experiment on Sterile Transitions (BEST), cuyos resultados se publicaron recientemente en las revistas Cartas de exploración física y Exploración física C.

«Los resultados son muy emocionantes», dijo Steve Elliott, analista senior de uno de los equipos que evalúan los datos y miembro de la División de Física de Los Alamos. «Esto definitivamente reafirma la anomalía que hemos visto en experimentos anteriores. Pero lo que esto significa no está claro. Ahora hay resultados contradictorios sobre neutrinos estériles. Si los resultados indican que la física nuclear o atómica fundamental es poco conocida, eso también sería muy interesante. Otros miembros del equipo de Los Álamos incluyen a Ralph Massarczyk e Inwook Kim.

MEJOR objetivo de galio

Ubicado a gran profundidad en el Observatorio de Neutrinos de Baksan en las montañas del Cáucaso en Rusia, el objetivo de galio de dos zonas completado, a la izquierda, contiene un depósito interno y externo de galio, que es irradiado por una fuente de neutrinos electrónicos. Crédito: AA Shikhin

Más de una milla bajo tierra en el Observatorio de Neutrinos Baksan en las montañas del Cáucaso de Rusia, BEST utilizó 26 discos irradiados de cromo 51, un radioisótopo sintético de cromo y la fuente de 3,4 megacuries de electrónica de neutrinos, para irradiar un tanque interno y externo de galio, un El metal plateado también se usó en experimentos anteriores, pero anteriormente en una configuración de un solo tanque. La reacción entre los neutrinos electrónicos de cromo-51 y el galio produce el isótopo germanio-71.

La tasa medida de producción de germanio-71 fue entre un 20 % y un 24 % inferior a la prevista en base a modelos teóricos. Esta discrepancia es consistente con la anomalía observada en experimentos previos.

BEST se basa en un experimento de neutrinos solares, el Experimento de galio soviético-estadounidense (SAGE), en el que el Laboratorio Nacional de Los Álamos fue un importante contribuyente, a partir de fines de la década de 1980. También utilizó galio y fuentes de neutrinos de alta intensidad. Los resultados de este experimento y otros indicaron un déficit de neutrinos electrónicos, una discrepancia entre los resultados previstos y los reales que se conoció como la «anomalía del galio». Una interpretación del déficit podría ser la evidencia de oscilaciones entre los estados de neutrino electrónico y neutrino estéril.

discos cromados

Un conjunto de 26 discos de cromo-51 irradiados son la fuente de neutrinos electrónicos que reaccionan con el galio y producen germanio-71 a velocidades que pueden medirse frente a las velocidades previstas. Crédito: AA Shikhin

La misma anomalía se repitió en el experimento BEST. Las posibles explicaciones incluyen nuevamente la oscilación en un neutrino estéril. La partícula hipotética puede constituir una parte significativa de la materia oscura, una forma prospectiva de materia que se cree que constituye la gran mayoría del universo físico. Sin embargo, esta interpretación puede requerir más pruebas, ya que la medición para cada tanque fue aproximadamente la misma, aunque más baja de lo esperado.

Otras explicaciones de la anomalía incluyen la posibilidad de un malentendido en las entradas teóricas del experimento, que la física misma necesita ser reelaborada. Elliott señala que la sección eficaz del neutrino electrónico nunca se ha medido a estas energías. Por ejemplo, una entrada teórica para medir la sección transversal, que es difícil de confirmar, es la densidad electrónica en el núcleo atómico.

La metodología del experimento se revisó cuidadosamente para garantizar que no se cometieran errores en aspectos de la investigación, como la ubicación de la fuente de radiación o las operaciones del sistema de conteo. Las iteraciones futuras del experimento, si se realizan, pueden incluir una fuente de radiación diferente con mayor energía, vida media más larga y sensibilidad a longitudes de onda de oscilación más cortas.

Referencias:

«Resultados del experimento Baksan sobre transiciones estériles (BEST)» por VV Barinov et al., 9 de junio de 2022, Cartas de exploración física.
DOI: 10.1103/PhysRevLett.128.232501

«Buscando transiciones de electrones-neutrinos a estados estériles en el experimento BEST» por VV Barinov et al., 9 de junio de 2022, Exploración física C.
DOI: 10.1103/PhysRevC.105.065502

Financiamiento: Departamento de Energía, Oficina de Ciencias, Oficina de Física Nuclear.

READ  Los lémures indri indri pueden cantar a diferentes ritmos, encuentra un estudio
Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada.

Horoscopo

Instrumento espacial de CU Boulder para ayudar a determinar si la luna de Júpiter tiene condiciones adecuadas para la vida

Published

on

En unos ocho años, un instrumento tubular de oro orbitará Júpiter en una nave espacial y volará repetidamente por una nube de partículas expulsadas de la superficie de Europa -una de las lunas de Júpiter- por pequeños impactos de meteoritos.

Un modelo técnico del analizador de polvo superficial utilizado para las pruebas se encuentra en el Laboratorio de Física Atmosférica y Espacial de la Universidad de Colorado en Boulder. (Matthew Jonas/fotógrafo del personal)

A medida que pasa a través de la nube, el instrumento busca partículas para probar elementos que determinarán si la superficie de Europa contiene moléculas orgánicas o sales o alguno de los ingredientes necesarios para la vida.

El proceso de averiguar si la Europa helada tiene la capacidad de albergar vida parece sencillo, ¿no es así? Bueno, se ha invertido mucho trabajo en la creación del instrumento que agilizará el complejo proceso, dijo Sally Haselschwardt, gerente de pruebas en la Universidad de Colorado Boulder para el analizador de polvo Europa SURface o SUDA.

«Es un director de operaciones tan elegante», dijo Haselschwardt. «En teoría, parece algo muy simple que una partícula entre, golpee (SUDA), golpee algo más y salgan los datos, pero en la práctica ha sido muy difícil debido a los requisitos ambientales. Tenemos un ambiente tan duro alrededor Europa, por lo que tenemos que construir un instrumento superresistente.

El miércoles, científicos del Laboratorio de Física Atmosférica y Espacial en el campus de CU Boulder dieron un primer vistazo a su instrumento, Europa SUDA, que volará en la nave espacial Europa Clipper de la NASA en una próxima misión. El instrumento costó alrededor de 50 millones de dólares.

El miércoles, el gerente del programa SUDA, Scott Tucker, habló con los medios sobre el analizador de polvo superficial.  (Matthew Jonas/fotógrafo del personal)
El miércoles, el gerente del programa SUDA, Scott Tucker, habló con los medios sobre el analizador de polvo superficial. (Matthew Jonas/fotógrafo del personal)

LASP comenzó a trabajar en SUDA en 2015. El próximo mes se enviará para su integración con Europa Clipper, que llevará un total de nueve instrumentos de varias intuiciones de investigación, dijo Scott Tucker, gerente de proyectos de LASP para SUDA. La nave espacial se lanzará en octubre de 2024, pero no llegará a Júpiter hasta 2030.

READ  Los negocios locales ayudan a las personas a pagar sus facturas a través del 'intercambio de espacio'

“Llevamos siete años en esto (y) todavía queda un largo camino por recorrer en términos de la vida de la misión”, dijo Tucker.

Para recolectar las partículas necesarias para determinar si Europa es apta para la vida, el Europa Clipper volará a 25 kilómetros de su superficie y recolectará material de una nube de polvo formada por pequeños meteoritos que golpean su superficie, dijo Bill Goode, quien tiene un doctorado. de CU Boulder. estudiante que forma parte del equipo de SUDA desde 2018. Los materiales serán probados para determinar de qué están hechos y de dónde vienen en la superficie de la luna.

«Hasta ahora, el único lugar que sabemos que es habitable es la tierra, y el único lugar que sabemos que está habitado también es la tierra», dijo Goode. “Queremos saber si existe o no un lugar además de la tierra donde las condiciones permitan que exista la vida”.

Goode dijo que uno de los otros instrumentos que se adjuntarán al Europa Clipper es un generador de imágenes de alto rendimiento que examinará la topografía de Europa. Este instrumento, junto con otro instrumento que utilizará luz infrarroja cercana para escanear la superficie de Europa, contribuirá al trabajo de SUDA.

«Nuestro instrumento funcionará en conjunto con estos otros instrumentos que observan de cerca las características de la superficie», dijo.

Después de años de trabajo, el equipo de SUDA en CU Boulder ahora está preparando el instrumento para enviarlo antes de lanzarlo al espacio. Haselschwardt, quien se unió al equipo en 2018, dijo que disfrutó su tiempo trabajando en el instrumento y aprendiendo del equipo de científicos calificados.

READ  Nuevo modelo biomecánico muestra al Tyrannosaurus rex en un andar oscilante

“Es una misión muy importante”, dijo. “Es una misión interplanetaria, por lo que es una escala mucho más larga. Estoy realmente agradecido de trabajar en él en una etapa tan temprana de mi carrera, así que realmente puedo ver todo lo que saldrá de él en el futuro.

Continue Reading

Horoscopo

Luna descubierta alrededor del asteroide Polymele por el equipo Lucy de la NASA

Published

on

Lucy explorará los asteroides troyanos de Júpiter, que se cree que son «fósiles formadores de planetas». Crédito: Centro de Vuelo Espacial Goddard de la NASA

Incluso antes de su lanzar en octubre de 2021,[{» attribute=»»>NASA’s Lucy mission was already on course to break records by visiting more asteroids than any previous mission. Now, the mission can add one more asteroid to the list, after a surprise result from a long-running observation campaign.

Lucy’s science team discovered on March 27 that the smallest of the mission’s Trojan asteroid targets, Polymele, has a satellite of its own. On that day, Polymele was expected to pass in front of a star. This would allow the team to observe the star blink out as the asteroid briefly blocked, or occulted, it. The Lucy team planned to measure the location, size, and shape of Polymele with unprecedented precision while it was outlined by the star behind it. To do so, they spread 26 teams of professional and amateur astronomers across the path where the occultation would be visible.

Asteroid Polymele

A graphic showing the observed separation of asteroid Polymele from its discovered satellite. Credit: NASA’s Goddard Space Flight Center

These occultation campaigns have been enormously successful in the past, providing valuable information to the mission on its asteroid targets, but this day would hold a special bonus.

We were thrilled that 14 teams reported observing the star blink out as it passed behind the asteroid. However, as we analyzed the data, we saw that two of the observations were not like the others,” said Marc Buie, Lucy occultation science lead at the Southwest Research Institute, which is headquartered in San Antonio. “Those two observers detected an object around 200 km (about 124 miles) away from Polymele. It had to be a satellite.”

Trojan Asteroid Polymele and Satellite

A graphic showing the observed separation of asteroid Polymele from its discovered satellite. Credit: NASA’s Goddard Space Flight Center

Using the occultation data, the scientists determined that this satellite is roughly 3 miles (5 km) in diameter, orbiting Polymele, which is itself around 17 miles (27 km) along its widest axis. The observed distance between the two bodies was approximately 125 miles (200 km).

Following planetary naming conventions, the satellite will not be issued an official name until the team can determine its orbit. As the satellite is too close to Polymele to be clearly seen by Earth-based or Earth-orbiting telescopes – without the help of a fortuitously positioned star – that determination will have to wait until Lucy approaches the asteroid in 2027, unless the team gets lucky with future occultation attempts before then.

At the time of the observation, Polymele was 480 million miles (770 million km) from Earth. Those distances are roughly equivalent to finding a quarter on a sidewalk in Los Angeles – while trying to spot it from a skyscraper thousands of miles away in Manhattan.

Satellite Orbiting Polymele

Using the occultation data, the team assessed that this satellite is roughly 3 miles (5 km) in diameter, orbiting Polymele, which is itself around 17 miles (27 km) along its widest axis. The observed distance between the two bodies was about 125 miles (200 km). Credit: NASA’s Goddard Space Flight Center

Asteroids hold vital clues to deciphering the history of the solar system – perhaps even the origins of life. Solving these mysteries is a high priority for NASA. The Lucy team originally planned to visit one main belt asteroid and six Trojan asteroids, a previously unexplored population of asteroids that lead and follow Jupiter in its orbit around the Sun. In January of 2021, the team used the Hubble Space Telescope to discover that one of the Trojan asteroids, Eurybates, has a small satellite. Now with this new satellite, Lucy is on track to visit nine asteroids on this remarkable 12-year voyage.

“Lucy’s tagline started out: 12 years, seven asteroids, one spacecraft,” said Lucy program scientist Tom Statler at NASA Headquarters in Washington. “We keep having to change the tagline for this mission, but that’s a good problem to have.”


El 9 de enero de 2020, la misión Lucy anunció oficialmente que no visitaría siete, sino ocho asteroides. Resulta que Eurybates, uno de los asteroides en el camino de Lucy, tiene un pequeño satélite. Poco después de que el equipo de Lucy descubriera el satélite, este y Eurybates se colocaron detrás del Sol, lo que impidió que el equipo siguiera observando. Sin embargo, los asteroides surgieron detrás del Sol en julio de 2020 y, desde entonces, el equipo de Lucy ha podido observar el satélite con el Hubble en varias ocasiones, lo que le permitió al equipo definir con precisión la órbita del satélite y permitir que el pequeño satélite finalmente obtenga una imagen oficial. nombre – Queta.

La investigadora principal de Lucy tiene su sede en Boulder, Colorado, una sucursal del Southwest Research Institute, con sede en San Antonio, Texas. El Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, proporciona gestión general de la misión, ingeniería de sistemas y seguridad y garantía de la misión. Lockheed Martin Space en Littleton, Colorado construyó la nave espacial. Lucy es la misión número 13 del programa Discovery de la NASA. El Centro de Vuelo Espacial Marshall de la NASA en Huntsville, Alabama, administra el Programa Discovery para la Dirección de Misiones Científicas de la agencia en Washington.

READ  Ars realiza un recorrido por la sala limpia de la nave espacial Psyche que orbita un asteroide JPL
Continue Reading

Horoscopo

Las muestras de asteroides devueltas a la Tierra revelan una posible fuente de agua y componentes básicos de la vida.

Published

on

La misión japonesa Hayabusa2 al asteroide Ryugu. 1 crédito

Los asteroides del sistema solar exterior pueden haber traído los componentes básicos de la vida a la Tierra.

Una nueva investigación ha revelado nuevas pistas importantes sobre cómo el sistema solar interior, incluida la Tierra, adquirió sus componentes ricos en agua y materia orgánica, los componentes básicos esenciales para toda la vida.

El equipo de Kochi2 emprendió un estudio detallado de ocho partículas devueltas a la Tierra por el asteroide «Ryugu» por el[{» attribute=»»>JAXA3 spacecraft Hayabusa2. They are supported by researchers at The Open University (OU) and the University of California, Los Angeles (UCLA), USA and led by Motoo Ito of JAMSTEC. It was published on August 15, 2022, in Nature Astronomy.

Most pristine solar system samples ever

Experts from the OU undertook oxygen isotope analysis on samples from Ryugu. They used data that was a critical component in establishing the links between the returned asteroid materials and the existing meteorite record.

Based on spacecraft data, it was previously thought that the Ryugu material had experienced high temperatures. Because of this, most of the water it contained was believed to have been driven off. This theory was discovered to be incorrect.

Asteroids Building Blocks of Life

Asteroids from the outer Solar System may have brought the building blocks of life to Earth. Credit: Phase2 Kochi/JAXA

In fact, the material contains a lot of water and organic matter. OU experts were able to confirm that the Ryugu samples are very similar to meteorites of the CI (Ivuna-type) chondrite group. These are considered the most important single meteorite group because they have a composition that matches that of our Solar System. They were also able to show that CI chondrites have been contaminated by their interaction with the terrestrial environment.

Because the Ryugu samples were collected and returned to Earth in ultra-clean conditions, they are the most pristine, primitive Solar System samples that we have.

‘More precious than gold dust’

The OU team was comprised of Richard Greenwood, Ross Findlay, Ian Franchi, and James Malley.

Richard Greenwood is a Research Fellow at the OU and supported the study through isotope analysis. Dr. Greenwood explained the importance of the research:

“When Asteroid Ryugu was surveyed in space by the Haybusa2 spacecraft it looked as though the results from the mission might be a bit disappointing. It seemed that materials from which the asteroid was composed had been heated to a high temperature and much of the water stored in them had been lost to space.

“However, while working as part of the Japanese Kochi Team, OU scientists were able to demonstrate that the Ryugu samples were closely similar to the important and unheated CI (Ivuna-type) chondrites. These are materials that have a composition that closely matches that of the Solar System itself, including the Sun. For understanding the chemistry of the Solar System it turns out that the Ryugu materials are more precious gold dust.”

Despite the material from Ryugu being aqueous (of or containing water), low temperatures mean the primary relationships between its minerals and the organic component have been preserved. Isotopic evidence (hydrogen and nitrogen) indicates that the fine-grained minerals and organics seen in the Ryugu particles formed in the outer Solar System.

Because of this study, experts have been able to conclude that materials in primitive asteroids may have acted as ‘cradles’ for organic molecules. This would have helped to preserve them and so provides a potential mechanism for the coupled delivery of water and organics to the early Earth.

Reference: “A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample” by Motoo Ito, Naotaka Tomioka, Masayuki Uesugi, Akira Yamaguchi, Naoki Shirai, Takuji Ohigashi, Ming-Chang Liu, Richard C. Greenwood, Makoto Kimura, Naoya Imae, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Akira Tsuchiyama, Masahiro Yasutake, Ross Findlay, Ian A. Franchi, James A. Malley, Kaitlyn A. McCain, Nozomi Matsuda, Kevin D. McKeegan, Kaori Hirahara, Akihisa Takeuchi, Shun Sekimoto, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Masahiko Arakawa, Atsushi Fujii, Masaki Fujimoto, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Osamu Mori, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Ryota Fukai, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Miwa Yoshitake, Toru Yada, Masanao Abe, Tomohiro Usui, Sei-ichiro Watanabe and Yuichi Tsuda, 15 August 2022, Nature Astronomy.
DOI: 10.1038/s41550-022-01745-5

READ  Las simulaciones en 3D mejoran la comprensión de la radiación energética de las partículas y ayudan a proteger los activos espaciales
Continue Reading

Trending