Connect with us

Horoscopo

Los resultados del experimento subterráneo profundo confirman una anomalía: posible nueva física fundamental

Published

on

Los resultados del experimento subterráneo profundo confirman una anomalía: posible nueva física fundamental

Los nuevos resultados del Experimento de transiciones estériles de Baksan (BEST) confirman una anomalía que sugiere una nueva posibilidad física.

Neutrino estéril, fundamentos de la física entre las interpretaciones de resultados anormales.

Nuevos resultados científicos confirman una anomalía observada en experimentos anteriores, que podría apuntar a una nueva partícula elemental aún no confirmada, el neutrino estéril, o indicar la necesidad de una nueva interpretación de un aspecto de física de modelos estándar, como la sección transversal de neutrinos, medida por primera vez hace 60 años. El Laboratorio Nacional de Los Álamos es la principal institución estadounidense que colabora en el experimento Baksan Experiment on Sterile Transitions (BEST), cuyos resultados se publicaron recientemente en las revistas Cartas de exploración física y Exploración física C.

«Los resultados son muy emocionantes», dijo Steve Elliott, analista senior de uno de los equipos que evalúan los datos y miembro de la División de Física de Los Alamos. «Esto definitivamente reafirma la anomalía que hemos visto en experimentos anteriores. Pero lo que esto significa no está claro. Ahora hay resultados contradictorios sobre neutrinos estériles. Si los resultados indican que la física nuclear o atómica fundamental es poco conocida, eso también sería muy interesante. Otros miembros del equipo de Los Álamos incluyen a Ralph Massarczyk e Inwook Kim.

MEJOR objetivo de galio

Ubicado a gran profundidad en el Observatorio de Neutrinos de Baksan en las montañas del Cáucaso en Rusia, el objetivo de galio de dos zonas completado, a la izquierda, contiene un depósito interno y externo de galio, que es irradiado por una fuente de neutrinos electrónicos. Crédito: AA Shikhin

Más de una milla bajo tierra en el Observatorio de Neutrinos Baksan en las montañas del Cáucaso de Rusia, BEST utilizó 26 discos irradiados de cromo 51, un radioisótopo sintético de cromo y la fuente de 3,4 megacuries de electrónica de neutrinos, para irradiar un tanque interno y externo de galio, un El metal plateado también se usó en experimentos anteriores, pero anteriormente en una configuración de un solo tanque. La reacción entre los neutrinos electrónicos de cromo-51 y el galio produce el isótopo germanio-71.

La tasa medida de producción de germanio-71 fue entre un 20 % y un 24 % inferior a la prevista en base a modelos teóricos. Esta discrepancia es consistente con la anomalía observada en experimentos previos.

BEST se basa en un experimento de neutrinos solares, el Experimento de galio soviético-estadounidense (SAGE), en el que el Laboratorio Nacional de Los Álamos fue un importante contribuyente, a partir de fines de la década de 1980. También utilizó galio y fuentes de neutrinos de alta intensidad. Los resultados de este experimento y otros indicaron un déficit de neutrinos electrónicos, una discrepancia entre los resultados previstos y los reales que se conoció como la «anomalía del galio». Una interpretación del déficit podría ser la evidencia de oscilaciones entre los estados de neutrino electrónico y neutrino estéril.

discos cromados

Un conjunto de 26 discos de cromo-51 irradiados son la fuente de neutrinos electrónicos que reaccionan con el galio y producen germanio-71 a velocidades que pueden medirse frente a las velocidades previstas. Crédito: AA Shikhin

La misma anomalía se repitió en el experimento BEST. Las posibles explicaciones incluyen nuevamente la oscilación en un neutrino estéril. La partícula hipotética puede constituir una parte significativa de la materia oscura, una forma prospectiva de materia que se cree que constituye la gran mayoría del universo físico. Sin embargo, esta interpretación puede requerir más pruebas, ya que la medición para cada tanque fue aproximadamente la misma, aunque más baja de lo esperado.

Otras explicaciones de la anomalía incluyen la posibilidad de un malentendido en las entradas teóricas del experimento, que la física misma necesita ser reelaborada. Elliott señala que la sección eficaz del neutrino electrónico nunca se ha medido a estas energías. Por ejemplo, una entrada teórica para medir la sección transversal, que es difícil de confirmar, es la densidad electrónica en el núcleo atómico.

La metodología del experimento se revisó cuidadosamente para garantizar que no se cometieran errores en aspectos de la investigación, como la ubicación de la fuente de radiación o las operaciones del sistema de conteo. Las iteraciones futuras del experimento, si se realizan, pueden incluir una fuente de radiación diferente con mayor energía, vida media más larga y sensibilidad a longitudes de onda de oscilación más cortas.

Referencias:

«Resultados del experimento Baksan sobre transiciones estériles (BEST)» por VV Barinov et al., 9 de junio de 2022, Cartas de exploración física.
DOI: 10.1103/PhysRevLett.128.232501

«Buscando transiciones de electrones-neutrinos a estados estériles en el experimento BEST» por VV Barinov et al., 9 de junio de 2022, Exploración física C.
DOI: 10.1103/PhysRevC.105.065502

Financiamiento: Departamento de Energía, Oficina de Ciencias, Oficina de Física Nuclear.

READ  Escuche los espeluznantes sonidos del espacio interestelar capturados por la Voyager de la NASA
Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

¿Cómo se destruyen las galaxias? | Espacio

Published

on

¿Cómo se destruyen las galaxias?  |  Espacio

Con el tiempo, todas las galaxias, incluida nuestra Vía Láctea, llegarán a su fin.

¿Pero cómo mueren las galaxias? Si quieres destruir una galaxia entera, tienes varias opciones, dependiendo del nivel de destructor que quieras.

Continue Reading

Horoscopo

Los termiteros más antiguos del mundo tienen 34.000 años y son magníficos

Published

on

Los termiteros más antiguos del mundo tienen 34.000 años y son magníficos

El paisaje de Sudáfrica está marcado por magníficas salpicaduras de flores silvestres. Crecen de esta manera particular porque prefieren acampar en termiteros que son más ricos en nutrientes que el suelo circundante y que también son los termiteros más antiguos del mundo.

Los montículos de termitas se conocen como «heuweltjies» en afrikáans, que significa «pequeñas colinas», y todavía hoy están habitados por la termita recolectora del sur (Viador de microhodotermos). Se encuentran a lo largo del río Buffels en Namaqualand, visibles en primavera gracias a las flores de color púrpura que florecen en la superficie de los montículos de termitas ricos en nutrientes.

«La reciente datación por radiocarbono ha revelado que estos montículos son mucho más antiguos que cualquier otro conocido anteriormente, y algunos datan de 34.000 años», dijo la autora principal del estudio, la Dra. Michele Francis, profesora titular (extraordinaria) del Departamento de Investigación. Ciencias del Suelo en la Facultad de Ciencias Agrícolas de la Universidad de Stellenbosch, en un declaración.

«Es más antiguo que las icónicas pinturas rupestres de Europa e incluso más antiguo que el Último Máximo Glacial, cuando vastas capas de hielo cubrieron gran parte del hemisferio norte».

El estudio de radiocarbono reveló que el carbono orgánico de los heuweltjies tenía entre 13.000 y 19.000 años, mientras que el carbonato databa de 34.000 años. El récord anterior de Brasil tenía sólo 4.000 años, lo que convierte a los montículos del río Buffels en los montículos de termitas activos más antiguos del planeta desde hace 30.000 años, al menos hasta que datamos por radiocarbono algunos que son incluso más antiguos.

READ  La mayoría de las mutaciones "silenciosas" son en realidad dañinas

“Para poner las cosas en perspectiva, estos termiteros ya eran antiguos cuando los mamuts lanudos todavía vagaban por la Tierra”, continuó Francisco. “Durante el último máximo glacial, hace unos 20.000 años, enormes capas de hielo cubrieron partes de América del Norte, Europa y Asia. Estos montículos ya tenían miles de años de antigüedad y proporcionaban un archivo vivo de las condiciones ambientales que dieron forma a nuestro mundo.

“El descubrimiento de estos montículos es como poder leer un manuscrito antiguo que cambia todo lo que creíamos saber sobre la historia”.

Crédito de la imagen: Teneille Nel.

Hoy habitan en un ambiente mucho menos gélido, pero constituyen un raro testimonio de las condiciones climáticas prehistóricas. Al estudiar su composición, el equipo pudo establecer que la región experimentó significativamente más precipitación cuando se formaron, introduciendo minerales como la calcita y el yeso en las aguas subterráneas como un proceso natural de secuestro de carbono.

Puede que sus creadores solo sean minis, pero estos antiguos montículos tienen un gran potencial para enseñarnos sobre el clima del pasado y cómo podemos mitigar el cambio climático en el futuro.

«El descubrimiento de estos montículos es similar a poder leer un manuscrito antiguo que cambia todo lo que creíamos saber sobre la historia», dijo Francis. «Su edad y la información que proporcionan sobre ecosistemas antiguos los convierten en candidatos para el reconocimiento mundial como una maravilla natural».

“Al estudiar estos montículos, los científicos pueden comprender mejor cómo combatir el cambio climático, utilizando procesos naturales de secuestro de carbono. También resaltan la importancia de preservar nuestro mundo natural, ya que estos pequeños ingenieros han estado dando forma a nuestro medio ambiente durante decenas de miles de años.

READ  ¡Buscar! Una superluna ilumina el cielo esta semana

El estudio se publica en Ciencia ambiental total.

Continue Reading

Horoscopo

Un viaje de 200 millones de años hacia la oxigenación

Published

on

Un viaje de 200 millones de años hacia la oxigenación

Los estudios de esquistos marinos y datos isotópicos del período del Gran Evento de Oxidación revelan fluctuaciones dinámicas de oxígeno en la atmósfera y los océanos de la Tierra, destacando la naturaleza prolongada y compleja de esta etapa evolutiva crítica. Crédito: SciTechDaily.com

El «gran evento de oxidación» de la Tierra duró 200 millones de años, según descubrimientos recientes.

Una nueva investigación destaca la complejidad del Gran Evento de Oxidación y revela que el aumento del oxígeno atmosférico y oceánico fue un proceso dinámico que duró más de 200 millones de años, influenciado por factores geológicos y biológicos clave para la evolución de la vida.

El gran evento de oxidación

Hace unos 2.500 millones de años, el oxígeno libre u O2han comenzado a acumularse en niveles significativos en la atmósfera de la Tierra, allanando el camino para que florezca vida compleja en nuestro planeta en evolución.

Los científicos llaman a este fenómeno el Gran Evento de Oxidación, o GOE para abreviar. Pero la acumulación inicial de O2 en la Tierra no fue tan simple como sugiere ese apodo, según una nueva investigación dirigida por un geoquímico de la Universidad de Utah.

Este «evento» duró al menos 200 millones de años. Y sigue la acumulación de O2 En los océanos ha sido muy difícil hasta ahora, afirmó Chadlin Ostrander, profesor asistente del Departamento de Geología y Geofísica.

«Los datos emergentes sugieren que el aumento inicial de O2 en la atmósfera de la Tierra fue dinámico, desarrollándose a trompicones hasta quizás 2.2. hace mil millones de años», afirmó Ostrander, autor principal del estudio publicado el 12 de junio en la revista Naturaleza. “Nuestros datos validan esta hipótesis y van aún más allá al extender esta dinámica al océano. »

Barco Chadlin Ostrander

Chadlin Ostrander. Crédito: Chad Ostrander, Universidad de Utah

Descripción general de las lutitas marinas

Su equipo de investigación internacional, apoyado por la NASA Programa de exobiología, centrado en las lutitas marinas del supergrupo Transvaal en Sudáfrica, que proporciona información sobre la dinámica de la oxigenación de los océanos durante este período crucial de la historia de la Tierra. Al analizar las proporciones de isótopos estables de talio (Tl) y elementos sensibles al redox, encontraron evidencia de fluctuaciones en el O marino.2 niveles que coincidieron con cambios en el oxígeno atmosférico.

READ  Perseverancia vista desde el espacio por ExoMars Orbiter de la ESA

Estos descubrimientos ayudan a avanzar en la comprensión de los complejos procesos que dieron forma al O de la Tierra.2 niveles durante un período crítico en la historia del planeta que allanó el camino para la evolución de la vida tal como la conocemos.

Comprender las condiciones tempranas del océano

«Realmente no sabemos qué estaba sucediendo en los océanos, donde probablemente aparecieron y evolucionaron las primeras formas de vida en la Tierra», dijo Ostrander, quien se unió al cuerpo docente de la Universidad el año pasado procedente del Instituto Oceanográfico Woods Hole en Massachusetts. «Entonces, conociendo la O2 El contenido de los océanos y cómo han cambiado con el tiempo son probablemente más importantes para el comienzo de la vida que la atmósfera.

La investigación se basa en el trabajo de los coautores de Ostrander, Simon Poulton de la Universidad de Leeds en el Reino Unido y Andrey Bekker de la Universidad de California en Riverside. En un Estudio 2021su equipo de científicos descubrió que O2 no se convirtió en parte permanente de la atmósfera hasta unos 200 millones de años después de que comenzara el proceso de oxigenación global, mucho más tarde de lo que se pensaba anteriormente.

Fluctuaciones de oxígeno atmosférico y oceánico.

La evidencia convincente de una atmósfera anóxica es la presencia de firmas de isótopos de azufre poco comunes e independientes de la masa en los registros sedimentarios presentados al GOE. Muy pocos procesos en la Tierra pueden generar estas firmas de isótopos de azufre y, por lo que se sabe, su preservación en el registro de rocas casi con certeza requiere una ausencia de O atmosférico.2.

READ  La mayoría de las mutaciones "silenciosas" son en realidad dañinas

Durante la primera mitad de la existencia de la Tierra, su atmósfera y océanos estuvieron en gran medida desprovistos de O.2. Al parecer, este gas fue producido por cianobacterias en el océano antes del GOE, pero en aquellos primeros días, O2 fue rápidamente destruido por reacciones con minerales expuestos y gases volcánicos. Poulton, Bekker y sus colegas descubrieron que las raras firmas de isótopos de azufre desaparecen y luego reaparecen, lo que sugiere múltiples O2 sube y baja en la atmósfera durante el GOE. Este no fue un “evento” único.

Los desafíos de oxigenar la Tierra

“La Tierra no estaba preparada para ser oxigenada cuando se empezó a producir oxígeno. La Tierra necesitó tiempo para evolucionar biológica, geológica y químicamente y ser propicia para la oxigenación”, dijo Ostrander. “Es como un balancín. Tienes producción de oxígeno, pero hay tanta destrucción de oxígeno que no pasa nada. Todavía estamos tratando de determinar cuándo habremos inclinado completamente la balanza y la Tierra ya no podrá volver a caer en una atmósfera anóxica.

hoy, oh2 Representa el 21% de la atmósfera, en peso, justo detrás del nitrógeno. Pero después del GOE, el oxígeno siguió siendo un componente muy pequeño de la atmósfera durante cientos de millones de años.

Técnicas avanzadas de análisis de isótopos.

Para rastrear la presencia de O2 en el océano durante el GOE, el equipo de investigación confió en la experiencia de Ostrander en isótopos estables de talio.

Los isótopos son átomos de un mismo elemento que tienen un número desigual de neutrones, lo que les confiere pesos ligeramente diferentes. Las proporciones isotópicas de un elemento particular han impulsado descubrimientos en arqueología, geoquímica y muchos otros campos.

READ  El último lanzamiento exitoso de Starlink de SpaceX – Spaceflight Now

Isótopos de talio e indicadores de oxígeno.

Los avances en espectrometría de masas han permitido a los científicos analizar con precisión las proporciones isotópicas de elementos cada vez más bajos en la tabla periódica, como el talio. Afortunadamente para Ostrander y su equipo, las proporciones de isótopos de talio son sensibles al entierro de óxido de manganeso en el fondo marino, un proceso que requiere O2 en agua de mar El equipo examinó los isótopos de talio en las mismas lutitas marinas que recientemente demostraron rastrear el O atmosférico.2 fluctuaciones durante GOE con isótopos de azufre raros.

En las lutitas, Ostrander y su equipo descubrieron notables enriquecimientos en el isótopo de masa más ligera del talio (203Tl), un patrón que se explica mejor por el entierro de óxido de manganeso en el fondo marino y, por lo tanto, la acumulación de O2 en agua de mar Estos enriquecimientos se encontraron en las mismas muestras que carecían de las raras firmas isotópicas del azufre y, por lo tanto, cuando la atmósfera ya no era anóxica. La guinda del pastel: el 203Los enriquecimientos de Tl desaparecen cuando regresan las raras firmas isotópicas de azufre. Estos resultados fueron corroborados por enriquecimientos de elementos sensibles a redox, una herramienta más tradicional para rastrear cambios en O.2.

“Cuando los isótopos de azufre dicen que la atmósfera se ha oxigenado, los isótopos de talio dicen que los océanos se han oxigenado. Y mientras que los isótopos de azufre dicen que la atmósfera se ha vuelto anóxica nuevamente, los isótopos de talio dicen lo mismo para el océano”, dijo Ostrander. “Así que la atmósfera y el océano se estaban oxigenando y desoxigenando juntos. Esta es información nueva e interesante para aquellos interesados ​​en la Tierra antigua.

Referencia: “Inicio de la oxigenación acoplada atmósfera-océano hace 2.300 millones de años” por Chadlin M. Ostrander, Andy W. Heard, Yunchao Shu, Andrey Bekker, Simon W. Poulton, Kasper P. Olesen y Sune G. Nielsen, 12 de junio de 2024, Naturaleza.
DOI: 10.1038/s41586-024-07551-5

Continue Reading

Trending