Connect with us

Horoscopo

Los científicos acaban de crear el campo magnético más poderoso del universo

Published

on

Los científicos acaban de crear el campo magnético más poderoso del universo

Quizás nunca hayas oído hablar de los magnetares, pero en pocas palabras son un tipo exótico de estrella de neutrones cuyo campo magnético es aproximadamente un billón de veces más fuerte que el de la Tierra.

Para ilustrar su fuerza, si te acercaras a menos de 1.000 kilómetros (600 millas) de un magnetar, tu cuerpo quedaría totalmente destruido.

Su campo increíblemente poderoso arrancaría electrones de tus átomos, convirtiéndote en una nube de iones monoatómicos (átomos simples sin electrones) como TierraCieloObservaciones.

Y, sin embargo, los científicos acaban de descubrir que podría haber áreas, justo aquí en nuestro querido planeta, donde estallan destellos de magnetismo con fuerzas que hacen que los magnetares parezcan positivamente débiles.

¿Cómo diablos es esto posible? Preguntas. Bueno, la respuesta no es sencilla.

Todo comienza en el Laboratorio Nacional Brookhaven del Departamento de Energía de EE. UU. (DOE). O, más precisamente, a su Colisionador relativista de iones pesados ​​(RHIC).

Los científicos pueden rastrear las trayectorias de las partículas que emergen de colisiones de iones pesados ​​en el RHIC(Roger Stoutenburgh y Jen Abramowitz/Laboratorio Nacional de Brookhaven)

Después de romper los núcleos de varios iones pesados ​​en este enorme acelerador de partículas, los físicos del Brookhaven Lab descubrieron evidencia de campos magnéticos sin precedentes.

Ahora, al medir el movimiento de partículas aún más pequeñas –quarks (los componentes básicos de toda la materia visible en el universo) y gluones (el “pegamento” que une los quarks para formar protones y neutrones)– los científicos esperan adquirir nuevos conocimientos. un vistazo al profundo funcionamiento interno de los átomos.

Es importante señalar que junto a estas dos partículas elementales, existen los antiquarks.

READ  El cohete lunar Artemis 1 de la NASA está listo para su lanzamiento el 16 de noviembre

Para cada “sabor” de quark, hay un antiquark, que tiene la misma masa en reposo y energía que su quark correspondiente, pero la carga y el número cuántico opuestos.

La vida de los quarks y antiquarks dentro de las partículas nucleares es corta. Pero cuanto más comprendamos cómo se mueven e interactúan, mejor comprenderán los expertos cómo se construye la materia (y, por extensión, el universo entero).

Para mapear la actividad de estas partículas fundamentales, los físicos necesitan un campo magnético extremadamente poderoso.

Para crear esto, el equipo del laboratorio de Brookhaven utilizó RHIC para crear colisiones descentradas de núcleos atómicos pesados, en este caso, oro.

El potente campo magnético generado durante este proceso indujo una corriente eléctrica en los quarks y gluones que fueron «liberados» de los protones y neutrones separados durante las colisiones.

El resultado es que los expertos han creado una nueva forma de estudiar la conductividad eléctrica de este «plasma de quarks y gluones» (QGP), un estado en el que los quarks y gluones se liberan al colisionar protones y neutrones, lo que contribuirá a mejorar nuestra comprensión de estos fenómenos. pilares fundamentales de la vida.

Las colisiones de iones pesados ​​generan un campo electromagnético extremadamente potente(Tiffany Bowman y Jen Abramowitz/Laboratorio Nacional de Brookhaven)

«Esta es la primera medición de cómo interactúa el campo magnético con el plasma de quarks y gluones (QGP)», dijo Diyu Shen, físico de la Universidad Fudan de China y líder del nuevo análisis. una declaración.

Y, de hecho, medir el impacto de estas colisiones descentradas sobre las partículas que se escapan es la única manera de proporcionar pruebas directas de la existencia de estos poderosos campos magnéticos.

READ  Comté planea alquilar espacio en el cuarto piso de un edificio | Noticias, deportes, empleos

Los expertos han creído durante mucho tiempo que impactos tan descentrados generarían potentes campos magnéticos, pero esto fue imposible de demostrar durante años.

Esto se debe a que las cosas suceden muy rápidamente en las colisiones de iones pesados, lo que significa que el campo no dura mucho.

Y por poco tiempo queremos decir que desaparece en diez millonésimas de milmillonésima de milmillonésima de segundo, lo que inevitablemente hace que sea complicado de observar.

Sin embargo, por efímero que sea este campo, es innegablemente fuerte. Esto se debe a que algunos de los protones y neutrones neutros cargados positivamente que forman los núcleos se envían en espiral, lo que da como resultado un remolino de magnetismo tan poderoso que liberan más gauss (la unidad de inducción magnética) que un neutrón de estrella.

«Se espera que estas cargas positivas que se mueven rápidamente generen un campo magnético muy fuerte, estimado en 1018 gauss», explicó Gang Wang, físico de la Universidad de California.

A modo de comparación, observó que las estrellas de neutrones, los objetos más densos del universo, tienen campos que miden alrededor de 1.014 gauss, mientras que los imanes de refrigerador producen un campo de alrededor de 100 gauss y el campo magnético protector de la Tierra es de sólo 0,5 gauss.

Esto significa que el campo magnético creado por colisiones de iones pesados ​​descentrados es «probablemente el más fuerte de nuestro universo», dijo Wang.

El campo magnético generado era considerablemente mayor que el de una estrella de neutrones.(iStock)

Sin embargo, como se explicó anteriormente, los científicos no han podido medir directamente el campo. En cambio, observaron el movimiento colectivo de partículas cargadas.

READ  Los nuevos datos son una prueba del proceso que alimenta las estrellas en explosión

«Queríamos ver si las partículas cargadas generadas durante las colisiones de iones pesados ​​descentrados se desviaban de una manera que sólo podía explicarse por la existencia de un campo electromagnético en los pequeños puntos QGP creados durante estas colisiones», dijo Aihong Tang. físico del laboratorio Brookhaven.

El equipo rastreó el movimiento colectivo de diferentes pares de partículas cargadas excluyendo la influencia de efectos no electromagnéticos en competencia.

«En última instancia, observamos un patrón de desviación dependiente de la carga que sólo puede ser desencadenado por un campo electromagnético en el QGP, una clara señal de inducción de Faraday (una ley que establece que un cambio en el flujo magnético induce un campo eléctrico)», dijo Tang. confirmado.

Ahora que los científicos tienen pruebas de que los campos magnéticos inducen un campo electromagnético en QGP, pueden estudiar la conductividad de QGP.

«Esta es una propiedad fundamental e importante», dijo Shen. “Podemos inferir el valor de la conductividad a partir de nuestra medición del movimiento colectivo.

«El grado de desviación de las partículas está directamente relacionado con la intensidad del campo electromagnético y la conductividad del QGP, y nadie ha medido antes la conductividad del QGP».

Inscribirse para nuestro boletín semanal gratuito Indy100

Exprésate en nuestra democracia mediática. Haga clic en el ícono de voto positivo en la parte superior de la página para ayudar a que este artículo ascienda en la clasificación de Indy100.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Dos importantes institutos espaciales de África se unen al proyecto lunar liderado por China

Published

on

Dos importantes institutos espaciales de África se unen al proyecto lunar liderado por China

El 5 de abril, Hu Chaobin, subdirector del Laboratorio de Exploración del Espacio Profundo de China, firmó el memorando de entendimiento con la directora del SSGI, Abdissa Yilma, en la capital etíope de Addis Abeba, según la cuenta oficial de WeChat del laboratorio.

Durante su reunión, Yilma dijo que el instituto participará activamente y promoverá la construcción del ILRS. Mientras tanto, Hu dijo que esperaba que el proyecto ayudara a impulsar el desarrollo del sector aeroespacial y las tecnologías de exploración espacial de Etiopía.

Hu Chaobin, subdirector del Laboratorio de Exploración del Espacio Profundo de China, con Jennifer W. Khamasi, directora interina de KAIST, en la firma del memorando de entendimiento a principios de este mes. Foto: X/@AJ_FI

Luego, el 8 de abril, Hu firmó el memorando de cooperación con la directora interina del KAIST, Jennifer W. Khamasi, durante su visita a Konza Techno City, al sur de Nairobi.

El presidente de la junta directiva de KAIST, Emmanuel Mutisya, que también estuvo presente en la reunión, dijo que el instituto se beneficiaría de las oportunidades de investigación y educación generadas por la colaboración. con el ILRS. También le dijo a Hu que KAIST ayudaría a impulsar al gobierno de Kenia a unirse al proyecto.

Hu invitó a Yilma y Mutisya a asistir a la Conferencia Internacional sobre Exploración del Espacio Profundo, conocida como Foro Tiandu, que se celebrará en China en septiembre.

Estas últimas asociaciones se formaron durante el viaje del laboratorio a la conferencia NewSpace África celebrada en Angola la primera semana de abril.

En la conferencia, el discurso de apertura de Hu incluyó el primer llamado público a las naciones y organizaciones africanas para que se unan a la iniciativa ILRS.

Hasta el momento, la ILRS cuenta con nueve países miembros: China, Rusia, Venezuela, Pakistán, Azerbaiyán, Bielorrusia, Sudáfrica, Egipto y Tailandia. Países de la OTAN Según se informa, Turquía también pidió unirse. Además de estos, también cuenta con varios miembros que son institutos de investigación, universidades o empresas.
El frecuentemente visto programa Artemis liderado por Estados Unidos como rival al proyecto ILRS, cuenta ahora con un total de 38 países que han firmado sus acuerdos Artemis.

SSGI es anteriormente el Instituto Etíope de Ciencia y Tecnología Espaciales, que se estableció en 2016 como una importante iniciativa para impulsar las actividades de ciencia y tecnología espaciales en el país para el desarrollo sostenible.

READ  Comté planea alquilar espacio en el cuarto piso de un edificio | Noticias, deportes, empleos

KAIST, actualmente en construcción en Konza Techno City, sigue el modelo del Instituto Avanzado de Ciencia y Tecnología de Corea. Su objetivo es liderar investigaciones pioneras en ciencia y tecnología y formar científicos e ingenieros altamente calificados para la industrialización y modernización de Kenia, según el sitio web del instituto.

Continue Reading

Horoscopo

El núcleo de Plutón probablemente fue creado por una antigua colisión

Published

on

El núcleo de Plutón probablemente fue creado por una antigua colisión

Suscríbase al boletín científico Wonder Theory de CNN. Explora el universo con información sobre descubrimientos fascinantes, avances científicos y mucho más..



cnn

Una enorme forma de corazón en la superficie de Plutón ha intrigado a los astrónomos desde que la nave espacial New Horizons de la NASA la capturó en una imagen de 2015. Los investigadores ahora creen que han resuelto el misterio de cómo surgió este corazón distintivo, y podría revelar nuevas pistas sobre los orígenes del planeta enano. .

Esta característica se llama Tombaugh Regio en honor al astrónomo Clyde Tombaugh, quien descubrió Plutón en 1930. Pero el núcleo no es solo un elemento, dicen los científicos. Y durante décadas, los detalles sobre la elevación de Tombaugh Regio, su composición geológica y forma distintiva, y su superficie altamente reflectante que es de un blanco más brillante que el resto de Plutón, han desafiado toda explicación.

Una cuenca profunda llamada Sputnik Planitia, que constituye el «lóbulo izquierdo» del núcleo, alberga gran parte del hielo de nitrógeno de Plutón.

La cuenca cubre un área de 745 millas por 1242 millas (1200 kilómetros por 2000 kilómetros), que es aproximadamente una cuarta parte del área de los Estados Unidos, pero también es de 1,9 a 2,5 millas (3 a 4 kilómetros) más baja. en elevación que la mayoría de los Estados Unidos. la superficie del planeta. Mientras tanto, el lado derecho del corazón también tiene una capa de hielo de nitrógeno, pero es mucho más delgada.

Gracias a una nueva investigación sobre Sputnik Planitia, un equipo internacional de científicos ha determinado que un evento cataclísmico creó el núcleo. Después de un análisis que incluyó simulaciones numéricas, los investigadores concluyeron que un cuerpo planetario de unos 700 kilómetros de diámetro, aproximadamente el doble del tamaño de Suiza de este a oeste, probablemente había chocado con Plutón en las primeras etapas de la historia del planeta enano.

READ  Una cadena de satélites StarLink de SpaceX ofrece una vista impresionante :: WRAL.com

Los hallazgos son parte de un estudio sobre Plutón y su estructura interna publicado el lunes en la revista astronomía natural.

Anteriormente, el equipo había estudiado características inusuales en todo el sistema solar, como aquellas en la cara oculta de la Luna, probablemente creadas por colisiones durante los caóticos primeros días de la formación del sistema.

Los investigadores crearon simulaciones numéricas utilizando un software de hidrodinámica de partículas suavizadas, considerado la base para una amplia gama de estudios de colisiones planetarias, para modelar diferentes escenarios de posibles impactos, velocidades, ángulos y composiciones de la colisión teorizada del cuerpo planetario con Plutón.

Los resultados mostraron que el cuerpo planetario probablemente chocó contra Plutón en un ángulo inclinado en lugar de de frente.

«El núcleo de Plutón es tan frío que el (cuerpo rocoso que chocó con el planeta enano) permaneció muy duro y no se derritió a pesar del calor del impacto, y gracias al ángulo de impacto y la baja velocidad, el núcleo derretido del impactador no se hunde en el núcleo de Plutón, pero permanece intacto como una salpicadura en él”, dijo el autor principal del estudio, el Dr. Harry Ballantyne, investigador asociado de la Universidad de Berna en Suiza, en un comunicado de prensa.

Pero, ¿qué pasó con el cuerpo planetario después de que chocó con Plutón?

«En algún lugar debajo del Sputnik se encuentra el núcleo restante de otro cuerpo masivo, que Plutón nunca digirió por completo», dijo en un comunicado de prensa el coautor del estudio Erik Asphaug, profesor del Laboratorio Planetario y Lunar de la Universidad de Arizona.

La forma de lágrima del Sputnik Planitia es el resultado de la frigidez del núcleo de Plutón, así como de la velocidad relativamente baja del impacto en sí, descubrió el equipo. Otros tipos de impactos que fueron más rápidos y directos habrían creado una forma más simétrica.

READ  Una nueva mirada a algunos fósiles antiguos acaba de reescribir la historia de la evolución humana

“Estamos acostumbrados a pensar en las colisiones planetarias como eventos increíblemente intensos cuyos detalles pueden ignorarse, excepto aspectos como la energía, el impulso y la densidad. Pero en el sistema solar distante, las velocidades son mucho más lentas y el hielo sólido es sólido, por lo que hay que ser mucho más preciso en los cálculos”, dijo Asphaug. «Ahí es donde comienza la diversión».

Mientras estudiaba la función cardíaca, el equipo también se centró en la estructura interna de Plutón. Un impacto temprano en la historia de Plutón habría creado un déficit de masa, provocando que Sputnik Planitia migrara lentamente hacia el polo norte del planeta enano con el tiempo, mientras el planeta aún se estaba formando. Esto se debe a que, según las leyes de la física, la cuenca es menos masiva que su entorno, explican los investigadores en el estudio.

Sin embargo, el Sputnik Planitia se encuentra cerca del ecuador del planeta enano.

Investigaciones anteriores han sugerido que Plutón podría tener un océano subsuperficial y, de ser así, la corteza helada sobre el océano subsuperficial sería más delgada en la región de Sputnik Planitia, creando una densa protuberancia de agua líquida y provocando una migración masiva hacia el ecuador”, señala el estudio. dijeron los autores.

Pero el nuevo estudio ofrece una explicación diferente para la ubicación de esta característica.

“En nuestras simulaciones, todo el manto primordial de Plutón queda ahuecado por el impacto, y cuando el material del núcleo del impactador salpica el núcleo de Plutón, crea un exceso de masa local que puede explicar la migración hacia el ecuador sin un océano subterráneo, o como mucho sin un océano subsuperficial muy delgado”, dijo el coautor del estudio, el Dr. Martin Jutzi, científico senior en investigación espacial y ciencias planetarias del Instituto de Física de la Universidad de Berna.

READ  Cuevas lunares podrían albergar astronautas

Kelsi Singer, científica principal del Southwest Research Institute en Boulder, Colorado, y co-investigadora principal adjunta de la misión New Horizons de la NASA, que no participó en el estudio, dijo que los autores hicieron un trabajo extenso en la exploración de modelos y el desarrollo de sus hipótesis. . , aunque le hubiera gustado ver “una conexión más estrecha con la evidencia geológica”.

«Por ejemplo, los autores sugieren que la parte sur de Sputnik Planitia es muy profunda, pero gran parte de la evidencia geológica se ha interpretado en el sentido de que el sur es menos profundo que el norte», dijo Singer.

Los investigadores creen que la nueva teoría sobre el núcleo de Plutón podría arrojar más luz sobre la formación del misterioso planeta enano. Los orígenes de Plutón siguen siendo oscuros ya que existe en el borde del sistema solar y sólo ha sido estudiado de cerca por la misión New Horizons.

«Plutón es un vasto país de las maravillas con una geología única y fascinante, por lo que siempre son útiles hipótesis más creativas para explicar esta geología», dijo Singer. “Lo que ayudaría a distinguir entre las diferentes hipótesis es más información sobre el subsuelo de Plutón. Sólo podemos lograrlo enviando una nave espacial a la órbita de Plutón, potencialmente con un radar capaz de mirar a través del hielo.

Continue Reading

Horoscopo

Vea cómo el 'cometa diablo' se acerca al Sol en una explosiva eyección de masa coronal (vídeo)

Published

on

Vea cómo el 'cometa diablo' se acerca al Sol en una explosiva eyección de masa coronal (vídeo)

El observatorio solar espacial STEREO-A de la NASA está monitoreando de cerca el «cometa del diablo» 12P/Pons-Brooks mientras se prepara para realizar su máxima aproximación al sol, conocida como perihelio, el 21 de abril.

En esta secuencia, el cometa pasa cerca de Júpiter desde la perspectiva del observatorio, justo cuando se lanza al espacio una eyección de masa coronal (CME), una gran expulsión de plasma y campo magnético del Sol.

Las CME se forman de la misma manera que las erupciones solares: son el resultado de la torsión y realineación del campo magnético del sol, conocido como reconexión magnética. Cuando estas líneas de campo magnético se “enredan”, producen fuertes campos magnéticos localizados que pueden atravesar la superficie del Sol y liberar CME.

Relacionado: El 'Cometa Diablo' 12P/Pons-Brooks se dirige hacia el sol. ¿Sobrevivirá?

Una animación que muestra el cometa 12P/Pons-Brooks brillando intensamente cerca de Júpiter cuando una gran CME es liberada del Sol el 12 de abril de 2024. (Crédito de la imagen: NASA STEREO/Edición de Steve Spaleta)
Continue Reading

Trending