Connect with us

Horoscopo

Imágenes en primer plano del choque del asteroide DART revelan restos complejos

Published

on

Imágenes en primer plano del choque del asteroide DART revelan restos complejos

En 2022, la prueba de redireccionamiento de doble asteroide (DART) de la NASA se estrelló contra el asteroide Dimorphos durante una prueba exitosa de tecnología de defensa planetaria. Este éxito se midió por un cambio significativo en la órbita de Dimorphos alrededor del asteroide más grande Didymos. Desde entonces, diferentes observatorios han analizado los datos para intentar reconstruir qué nos dicen los restos del impacto sobre la estructura del asteroide.

Todas estas observaciones tuvieron lugar a grandes distancias del impacto. Pero DART llevaba consigo un pequeño CubeSat llamado LICIACube y lo dejó caer en una trayectoria de escape unas semanas antes del impacto. Tomó algún tiempo recuperar todas las imágenes de LICIACube de la Tierra y analizarlas, pero ahora están llegando los resultados y brindan pistas sobre la composición y la historia de Dimorphos, así como por qué el impacto tuvo un efecto tan significativo en su órbita.

Rastreando escombros

LICIACube estaba equipada con generadores de imágenes de campo estrecho y amplio (llamados LEIA y LUKE mediante retrorónimos cuidadosamente elegidos). Siguió a DART a través de la zona de impacto durante aproximadamente tres minutos y capturó imágenes comenzando aproximadamente un minuto antes del impacto y continuando durante más de cinco minutos después.

Estos mostraron que el impacto había creado un complejo campo de escombros. En lugar de un único cono de materia, había filamentos y grupos de material eyectado, todos moviéndose a diferentes velocidades. Un artículo, publicado hoy en Nature, intenta catalogar gran parte del mismo. Así, por ejemplo, identifica un flujo de material expulsado que aparece en las primeras imágenes posteriores al impacto y que puede seguirse hasta que se detengan las imágenes. En este punto se extiende ocho kilómetros desde el lugar del impacto. Esto equivale a una velocidad de aproximadamente 50 metros por segundo.

READ  El acuerdo de Brunch Snob para el espacio Sunrise Diner falla

Por otra parte, había un grupo de material que fue visible durante aproximadamente un minuto y medio y se movía a unos 75 metros por segundo; un segundo grupo se movía aproximadamente a la mitad de esa velocidad.

El material más rápido que pudieron rastrear fue expulsado a unos 500 metros por segundo, o unos 1.800 kilómetros por hora (1.100 mph). Y eso ayuda a resaltar el valor de LICIACube, ya que las mejores observaciones que tenemos a distancia fueron realizadas por el Hubble, y solo detectó objetos que se movían a la mitad de esa velocidad.

Curiosamente, el material expulsado inicialmente parece rojizo, pero gradualmente cambia a azul con el tiempo. Los investigadores sugieren que esto podría significar que la superficie del asteroide se había enrojecido por la exposición a la radiación y que el primer material que salió del impacto procedía de la superficie. Más tarde, a medida que salió más material del interior, el enrojecimiento disminuyó.

A finales del año pasado, un artículo separado se centró en las dimensiones del cono de escombros. Utilizándolos, trabajó hacia atrás para evaluar dónde llegaba este cono a la superficie de Dimorphos. Con base en esto, los investigadores involucrados estimaron que el material provenía de un cráter de aproximadamente 65 metros de diámetro.

Un interior débil

El seguimiento de todos los desechos complejos es importante en parte porque ha desempeñado un papel en la eficacia de DART. Sabemos exactamente cuánto impulso aportó la nave espacial DART a la colisión, y podemos compararlo con estimaciones de cuánto se necesitó para cambiar la órbita de Dimorphos. Según las estimaciones de la magnitud del cambio orbital, así como de la masa inicial de Dimorphos, está claro que el impulso de DART no puede explicar todo el cambio. Por lo tanto, una parte significativa del intercambio de impulso se produjo cuando los escombros del impacto se llevaron el impulso de Dimorphos.

READ  Hubble ve rocas que escapan del asteroide Dimorphos

Un artículo adicional toma los datos de LICIACube sobre el material expulsado y los utiliza para intentar estimar las propiedades internas de Dimorphos. Se utilizó un modelo de la física de la colisión para probar varias composiciones internas del asteroide que variaban según su densidad, la cantidad de roca sólida frente a material suelto y otras características. Los mejores resultados provienen de un cuerpo poroso de densidad relativamente baja que no contiene muchas rocas grandes cerca de su superficie.

Dada esta estructura, los investigadores concluyen que DART probablemente causó una alteración global de la estructura de su objetivo.

La estructura débil y fragmentada de Dimorphos se parece mucho a lo que hemos visto en visitas a los llamados «asteroides de pila de escombros» como Bennu y Ryugu. Lo sorprendente es que es mucho más débil que la estructura de su vecino más grande, Didymos. Sin embargo, esto es consistente con los modelos de cómo se debió formar Dimorphos. Estos postulan que Didymos perdió materia, parte de la cual permaneció unida gravitacionalmente y terminó en órbita.

Esto podría ocurrir mediante una colisión, pero se esperaría que fuera lo suficientemente energético como para liberar una amplia gama de material de Didymos. Sin embargo, una alternativa es que el calentamiento solar podría aumentar la rotación de Didymos hasta que ya no tenga suficiente fuerza gravitacional para contener todo su material. En este caso, es probable que los materiales más ligeros sean expulsados ​​primero de la superficie, lo que quizás explique el tamaño relativamente pequeño del material Dimorphos.

La buena noticia es que dentro de unos años deberíamos tener una mejor visión del sistema posterior al impacto. A finales de 2024, la ESA tiene previsto lanzar una sonda llamada Hera que orbitará el sistema Didymos/Dimorphos y proporcionará datos detallados sobre las consecuencias de la colisión.

READ  Probando superficies antibacterianas en la Estación Espacial Internacional – Ars Technica

Revista de Ciencias Planetarias, 2023. DOI: 10.3847/PSJ/ad09ba (Acerca de los DOI).

Naturaleza, 2024. DOI: 10.1038/s41586-023-06998-2

Astronomía Natural, 2024. DOI: 10,1038/s41550-024-02200-3

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Descubrimiento sin precedentes en meteoritos desafía los modelos astrofísicos

Published

on

Descubrimiento sin precedentes en meteoritos desafía los modelos astrofísicos

Los investigadores han descubierto una rara partícula de polvo en un meteorito, formada por una estrella distinta de nuestro sol. Utilizando tomografía avanzada con sonda atómica, analizaron la proporción única de isótopos de magnesio de la partícula, revelando su origen a partir de un tipo recientemente identificado de supernova que quema hidrógeno. Este avance proporciona una mejor comprensión de los eventos cósmicos y la formación de estrellas. Crédito: SciTechDaily.com

Los científicos han descubierto una partícula de meteorito con una proporción de isótopos de magnesio sin precedentes, lo que apunta a su origen en una supernova que quema hidrógeno.

La investigación ha descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre formado por una estrella distinta a nuestro sol.

El descubrimiento fue realizado por la autora principal, la Dra. Nicole Nevill y sus colegas durante sus estudios de doctorado en la Universidad de Curtin, quienes actualmente trabajan en el Instituto de Ciencias Lunares y Planetarias en colaboración con NASAen el Centro Espacial Johnson.

Meteoritos y granos presolares

Los meteoritos están formados principalmente por materiales formados en nuestro sistema solar y también pueden contener pequeñas partículas de estrellas nacidas mucho antes que nuestro sol.

Las pistas de que estas partículas, llamadas granos presolares, son reliquias de otras estrellas, se descubren analizando los diferentes tipos de elementos que contienen.

Técnicas analíticas innovadoras

El Dr. Nevill utilizó una técnica llamada átomo Sonda tomográfica para analizar la partícula y reconstruir la química a escala atómica, accediendo a la información escondida en su interior.

«Estas partículas son como cápsulas del tiempo celestes y proporcionan una instantánea de la vida de su estrella madre», dijo el Dr. Nevill.

READ  El rover Curiosity de la NASA capturó imágenes asombrosas de las nubes en Marte

“Los materiales creados en nuestro sistema solar tienen proporciones de isótopos predecibles: variantes de elementos con diferente número de neutrones. La partícula que analizamos tiene una proporción de isótopos de magnesio distinta de cualquier otra cosa en nuestro sistema solar.

“Los resultados fueron literalmente fuera de este mundo. La proporción de isótopos de magnesio más extrema, de estudios anteriores de granos presolares, fue de alrededor de 1.200. El grano en nuestro estudio tiene un valor de 3.025, que es el valor más alto jamás descubierto.

«Esta proporción de isótopos excepcionalmente alta sólo puede explicarse por la formación de un tipo de estrella recientemente descubierta: una supernova que quema hidrógeno».

Avances en astrofísica

El coautor, el Dr. David Saxey, del Centro John de Laeter en Curtin, dijo que la investigación innova la forma en que entendemos el universo, ampliando los límites de las técnicas analíticas y los modelos astrofísicos.

«La sonda atómica nos proporcionó un gran nivel de detalle al que no habíamos podido acceder en estudios anteriores», afirmó el Dr. Saxey.

“La supernova que quema hidrógeno es un tipo de estrella que se descubrió recientemente, casi al mismo tiempo que estábamos analizando la pequeña partícula de polvo. El uso de la sonda atómica en este estudio proporciona un nuevo nivel de detalle que nos ayuda a comprender cómo se formaron estas estrellas.

Vinculando los resultados de laboratorio con los fenómenos cósmicos

El coautor, el profesor Phil Bland de la Escuela de Ciencias Planetarias y de la Tierra de Curtin, dijo que los nuevos descubrimientos del estudio de partículas raras en meteoritos nos permiten comprender mejor los eventos cósmicos más allá de nuestro sistema solar.

READ  El acuerdo de Brunch Snob para el espacio Sunrise Diner falla

«Es simplemente asombroso poder relacionar mediciones a escala atómica en el laboratorio con un tipo de estrella recientemente descubierta».

La investigación titulada “Elemento a escala atómica y estudio isotópico de 25Polvo estelar rico en magnesio procedente de una supernova que quema hidrógeno » fue publicado en el Revista de astrofísica.

Referencia: “Elemento a escala atómica y estudio isotópico de 25Mg-rich Stardust from an H-burning Supernova” por ND Nevill, PA Bland, DW Saxey, WDA Rickard, P. Guagliardo, NE Timms, LV Forman, L. Daly y SM Reddy, 28 de marzo de 2024, La revista de astrofísica.
DOI: 10.3847/1538-4357/ad2996

Continue Reading

Horoscopo

Una nueva era: comienza la campaña de lanzamiento del Ariane 6

Published

on

Una nueva era: comienza la campaña de lanzamiento del Ariane 6

El 5 de julio de 2023, el lanzador Ariane 5 realizó su último vuelo, poniendo así fin a los 27 años de carrera del que fue el primer cohete pesado de Europa. Casi diez meses después, Arianespace vuelve a la plataforma de lanzamiento con su nuevo caballo de batalla avanzado para el transporte pesado: el Ariane 6.

Por primera vez, el núcleo central y los propulsores del Ariane 6 fueron entregados a la plataforma de lanzamiento ELA-4 en Kourou, Guayana Francesa, marcando oficialmente el inicio de la campaña de lanzamiento inaugural.

El miércoles 24 de abril, el núcleo central del cohete, compuesto por el propulsor principal y la etapa superior, fue transportado 800 metros desde el edificio de montaje del lanzador hasta la plataforma ELA-4, donde fue instalado sobre la mesa de lanzamiento mediante una grúa. y con la asistencia de vehículos de guiado automático (AGV).

Durante los dos días siguientes, Arianespace trabajó para entregar los dos propulsores de cohetes de estado sólido P120C del vehículo a la plataforma y luego montarlos en la mesa de lanzamiento a cada lado del núcleo central. Esta es la configuración del Ariane 62 que realizará la primera misión del vehículo.

El primer cohete propulsor sólido Ariane 6 se transporta al sitio de lanzamiento ELA-4 para su integración. (Crédito: ESA/ArianeGroup/CNES)

Al igual que su predecesor, el Ariane 6 tiene un diseño de dos etapas, propulsado por motores que queman hidrógeno líquido y oxígeno líquido. La primera etapa está equipada con un motor Vulcain 2.1, una versión mejorada del motor Vulcain 2 que volaba en el Ariane 5. La segunda etapa, por su parte, está equipada con un motor Vinci de nuevo diseño, capaz de producir 180 kN de empuje en una aspiradora.

READ  British Eatery lanza Samosa al espacio y se estrella en Francia

Ariane 6 está configurado para volar con un solo par o dos pares de propulsores de cohetes sólidos P120C, que producen un porcentaje importante del empuje total en el despegue. Cada propulsor contiene 142 toneladas de propulsor sólido y puede generar hasta 4.650 kN de empuje.

La capacidad de carga del Ariane 6 varía según la configuración de vuelo utilizada. La versión Ariane 62 que utiliza dos propulsores es capaz de transportar hasta 10.350 kg a la órbita terrestre baja (LEO) y 4.500 kg a la órbita de transferencia geoestacionaria (GTO), mientras que la variante Ariane 64 con cuatro propulsores puede colocar hasta 21.500 kg en órbita baja. Órbita terrestre (LEO). y 11.500 kg en GTO.

«El lanzamiento del Ariane 6 y la restauración del acceso de Europa al espacio son una prioridad absoluta para la ESA a la hora de reanudar los lanzamientos regulares de cohetes desde el puerto espacial europeo», afirmó el director general de la ESA, Josef Aschbacher. “Juntar las etapas del cohete en la plataforma de lanzamiento marca el inicio de una campaña de lanzamiento y muestra que ya casi llegamos; Pronto veremos esta belleza elevarse hacia el cielo.

El siguiente paso en la campaña inicial del Ariane 6 es acoplar los propulsores P120C al núcleo central, actuando como mecanismo de soporte para la pila de lanzamiento. Una vez ensamblados, los equipos realizarán las conexiones mecánicas y eléctricas necesarias.

Luego, para completar el primer Ariane 6, sólo quedará instalar el carenado con las cargas útiles encapsuladas en su interior. Esto tendrá lugar unas semanas antes de la fecha de lanzamiento prevista.

READ  Primera tripulación espacial privada que paga $ 55 millones cada una para llegar a la Estación Espacial Internacional

Estas operaciones de integración de vehículos se llevaron a cabo bajo la jurisdicción primaria de la ESA, con el apoyo de ArianeGroup y la agencia espacial francesa CNES.

«Ver el nuevo lanzador europeo en la plataforma de lanzamiento marca la finalización de años de trabajo en las oficinas de diseño y plantas de producción de ArianeGroup y de todos nuestros socios industriales en Europa», dijo Martin Sion, director ejecutivo de ArianeGroup. “Este evento marca también el inicio de una nueva etapa de la campaña de primeros vuelos, con todos los desafíos y complejidades que esto conlleva. Los miembros de nuestro Space Team Europe están poniendo todo su conocimiento y experiencia para que este primer vuelo sea un completo éxito.

El primer núcleo central de Ariane 6 está a punto de ser integrado. (Crédito: ESA/ArianeGroup/CNES)

Ariane 6 está diseñado para poder lanzar varias configuraciones de misión. Estas podrían variar desde misiones LEO que involucran constelaciones de satélites hasta misiones Galileo de lanzamiento dual en órbita terrestre media (MEO), lanzamiento único y lanzamiento dual de satélites geosincrónicos/geoestacionarios.

Para su primer lanzamiento, Ariane 6 intentará entregar un conjunto de pequeñas cargas útiles y experimentos a LEO para clientes como la ESA, la NASA, universidades europeas y varias empresas comerciales.

Algunas cargas útiles constan de CubeSats, mientras que otras permanecerán unidas a la etapa superior para documentar la misión. Dos cargas útiles regresarán a la Tierra en forma de cápsulas de reentrada, diseñadas para probar nuevos materiales.

Arianespace y la ESA apuntan actualmente a una ventana entre el 15 de junio y el 31 de julio de 2024 para el primer vuelo de Ariane 6.

READ  Astrónomos descubren un agujero negro más cerca de la Tierra que nunca

“El programa Ariane 6 entra ahora en su recta final antes del vuelo inaugural desde el Puerto Espacial Europeo en la Guayana Francesa. La soberanía europea sobre el acceso al espacio vuelve a ser posible gracias al duro trabajo de los equipos de la ESA, ArianeGroup y CNES”, declaró Philippe Baptiste, director general del CNES. “Me gustaría agradecerles y enviarles mis mejores deseos para las etapas finales. ¡Vamos Ariane 6!

(Imagen principal: El primer núcleo central de Ariane 6 se encuentra dentro del edificio móvil del complejo de lanzamiento ELA-4 en Kourou en preparación para su lanzamiento inaugural. Crédito: ESA/ArianeGroup/CNES)

Continue Reading

Horoscopo

Encontrado el indicio más prometedor de vida en otro planeta, cortesía de James Webb

Published

on

Encontrado el indicio más prometedor de vida en otro planeta, cortesía de James Webb

Los científicos se están centrando en detectar sulfuro de dimetilo (DMS) en su atmósfera.

El Telescopio Espacial James Webb (JWST), el telescopio más potente jamás lanzado, está a punto de comenzar una misión de observación crucial en la búsqueda de vida extraterrestre.

Como se informó Los tiempos, El telescopio enfocará un planeta distante que orbita una estrella enana roja, K2-18b, ubicada a 124 años luz de distancia.

K2-18b ha atraído la atención de los científicos debido a su potencial para albergar vida. Se cree que es un mundo cubierto de océanos que es aproximadamente 2,6 veces más grande que la Tierra.

El elemento clave que buscan los científicos es el sulfuro de dimetilo (DMS), un gas con características fascinantes. Según la NASA, en la Tierra el DMS es “producido únicamente por la vida”, principalmente por el fitoplancton marino.

La presencia de DMS en la atmósfera de K2-18b sería un descubrimiento importante, aunque el Dr. Nikku Madhusudhan, astrofísico principal del estudio en Cambridge, advierte contra sacar conclusiones precipitadas. Aunque los datos preliminares del JWST sugieren una alta probabilidad (más del 50%) de la presencia de DMS, se necesitan más análisis. El telescopio pasará ocho horas observando este viernes, seguidas de meses de procesamiento de datos antes de poder encontrar una respuesta definitiva.

La ausencia de un proceso natural, geológico o químico que se sepa que genera DMS en ausencia de vida añade peso al entusiasmo. Sin embargo, incluso si se confirma, la gran distancia de K2-18b presenta un obstáculo tecnológico. Viajando a la velocidad de la nave espacial Voyager (60.000 kilómetros por hora), una sonda tardaría 2,2 millones de años en llegar al planeta.

READ  Primera tripulación espacial privada que paga $ 55 millones cada una para llegar a la Estación Espacial Internacional

A pesar de la inmensa distancia, la capacidad del JWST para analizar la composición química de la atmósfera de un planeta mediante el análisis espectral de la luz de las estrellas que se filtra a través de sus nubes proporciona una nueva ventana al potencial de vida más allá de la Tierra. Esta misión tiene el potencial de responder a la antigua pregunta de si estamos realmente solos en el universo.

Las próximas observaciones también pretenden aclarar la existencia de metano y dióxido de carbono en la atmósfera de K2-18b, resolviendo potencialmente el «problema de metano faltante» que ha desconcertado a los científicos durante más de una década. Si bien continúa el trabajo teórico sobre las fuentes no biológicas del gas, se esperan conclusiones definitivas dentro de cuatro a seis meses.

Continue Reading

Trending