Connect with us

Horoscopo

¿Cómo evitó la Tierra un destino similar al de Marte? Las rocas antiguas contienen pistas

Published

on

¿Cómo evitó la Tierra un destino similar al de Marte?  Las rocas antiguas contienen pistas

Una representación de la Tierra, al principio sin núcleo interno; segundo, con un núcleo interno que comenzó a desarrollarse hace unos 550 millones de años; tercero, con un núcleo interno más externo y más interno, hace unos 450 millones de años. Investigadores de la Universidad de Rochester utilizaron el paleomagnetismo para determinar estas dos fechas clave en la historia del núcleo interno, que creen que restauró el campo magnético del planeta justo antes de que la vida explotara en la Tierra. Crédito: Universidad de Rochester / Michael Osadciw

Alrededor de 1.800 millas por debajo de nuestros pies, el hierro líquido que gira en el núcleo exterior de la Tierra genera el campo magnético protector de nuestro planeta. Este campo magnético es invisible pero vital para la vida en la superficie de la Tierra porque protege al planeta del viento solar, de los flujos de radiación del sol.


Sin embargo, hace unos 565 millones de años, el campo magnéticoLa fuerza disminuyó al 10% de la fuerza actual. Luego, misteriosamente, el campo se recuperó, recuperando su fuerza justo antes de la explosión cámbrica de vida multicelular en la Tierra.

¿Qué hizo que el campo magnético rebotara?

Según una nueva investigación realizada por científicos de la Universidad de Rochester, este rejuvenecimiento ocurrió dentro de decenas de millones de años, rápidamente en escalas de tiempo geológico, y coincidió con la formación del núcleo interno sólido de la Tierra, lo que sugiere que el núcleo es probablemente un causa.

«El núcleo interno es extremadamente importante», dice John Tarduno, William R. Kenan, Jr., profesor de geofísica en el Departamento de Ciencias Ambientales y de la Tierra y decano de investigación para las artes, las ciencias y la ingeniería en Rochester. «Justo antes de que el núcleo interno comenzara a crecer, el campo magnético estaba a punto de colapsar, pero tan pronto como el núcleo interno comenzó a crecer, el campo se regeneró».

En el artículo publicado en Naturaleza Comunicación, los investigadores determinaron varias fechas clave en la historia del núcleo interno, incluida una estimación más precisa de su edad. La investigación proporciona pistas sobre la historia y la evolución futura de la Tierra y cómo se convirtió en un planeta habitable, así como la evolución de otros planetas del sistema solar.

Desbloquear información en rocas antiguas

La Tierra está formada por capas: la corteza, donde se encuentra la vida; la Saco, la capa más gruesa de la Tierra; el núcleo exterior fundido; y el núcleo interno sólido, que a su vez está compuesto por un núcleo interno más externo y un núcleo interno más interno.

El campo magnético de la Tierra se genera en su núcleo exterior, donde el hierro líquido en remolino provoca Corrientes eléctricasdando como resultado un fenómeno llamado geodinamo que produce el campo magnético.

Debido a la relación entre el campo magnético y el núcleo de la Tierra, los científicos han intentado durante décadas determinar cómo han cambiado el campo magnético y el núcleo de la Tierra a lo largo de la historia de nuestro planeta. No pueden medir directamente el campo magnético debido a la ubicación y las temperaturas extremas de los materiales en el núcleo. Afortunadamente, los minerales que suben a la superficie de la Tierra contienen diminutas partículas magnéticas que bloquean la dirección y la fuerza del campo magnético a medida que los minerales se enfrían desde su estado fundido.

Para limitar mejor la edad y el crecimiento del núcleo interno, Tarduno y su equipo utilizaron un CO2 láser y el magnetómetro del dispositivo de interferencia cuántica superconductora (SQUID) del laboratorio para analizar cristales de feldespato de anortosita de roca. Estos cristales contienen pequeñas agujas magnéticas que son «grabadores magnéticos perfectos», dice Tarduno.

Al estudiar el magnetismo encerrado en cristales antiguos, un campo conocido como paleomagnetismo, los investigadores han determinado dos nuevas fechas importantes en la historia del núcleo interno:

  • hace 550 millones de años: el momento en que el campo magnético comenzó a renovarse rápidamente después de un casi colapso hace 15 millones de años. Los investigadores atribuyen la rápida renovación del campo magnético a la formación de un núcleo interno fuerte que recargó el núcleo exterior fundido y restauró la fuerza del campo magnético.
  • hace 450 millones de años: el momento en que la estructura del núcleo interno en crecimiento ha cambiado, marcando el límite entre el núcleo interno más interno y el más externo. Estos cambios en el núcleo interno coinciden con cambios casi al mismo tiempo en la estructura del manto suprayacente, debido a placas tectonicas en la superficie.

«Debido a que limitamos la edad del núcleo interno con mayor precisión, pudimos explorar el hecho de que el núcleo interno actual en realidad se compone de dos partes», dice Tarduno. «Los movimientos de placas tectónicas en la superficie de la Tierra han afectado indirectamente al núcleo interno, y la historia de estos movimientos está impresa en lo profundo de la Tierra en la estructura del núcleo interno».

Evita un destino similar al de Marte

Comprender mejor la dinámica y el crecimiento del núcleo interno y el campo magnético tiene implicaciones importantes, no solo para descubrir el pasado de la Tierra y predecir su futuro, sino también para desentrañar las formas en que otros planetas podrían formar escudos magnéticos y mantener las condiciones necesarias para sustentar la vida. . .

Los investigadores creen que Marte, por ejemplo, una vez tuvo un campo magnético, pero el campo se disipó, dejando al planeta vulnerable a viento solar y la superficie sin océanos. Aunque no está claro si la ausencia de un campo magnético habría causado el mismo destino para la Tierra, «la Tierra ciertamente habría perdido mucho más el agua si el campo magnético de la Tierra no se hubiera regenerado», dice Tarduno. «El planeta sería mucho más seco y muy diferente del planeta actual».

En términos de evolución planetaria, la investigación apunta a la importancia de un escudo magnético y un mecanismo para mantenerlo, dice.

«Esta investigación realmente destaca la necesidad de tener algo como el crecimiento núcleo central que mantiene un campo magnético durante toda la vida – varios miles de millones de años – de un planeta».


Una nueva investigación proporciona evidencia de un fuerte campo magnético temprano alrededor de la Tierra


Más información:
Tinghong Zhou et al, Renovación de geodinamo del Cámbrico temprano y origen de la estructura del núcleo interno, Naturaleza Comunicación (2022). DOI: 10.1038/s41467-022-31677-7

Proporcionado por
Universidad de Rochester

Cotizar: ¿Cómo evitó la Tierra un destino similar al de Marte? Ancient Rocks Hold Clues (25 de julio de 2022) Consultado el 26 de julio de 2022 en https://phys.org/news/2022-07-earth-mars-like-fate-ancient-clues.html

Este documento está sujeto a derechos de autor. Excepto para el uso justo con fines de estudio o investigación privados, ninguna parte puede reproducirse sin permiso por escrito. El contenido se proporciona únicamente a título informativo.

READ  Los arqueólogos descubren un conjunto no identificado de innovaciones culturales que datan de hace 40.000 años

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

JWST descubre objetos parecidos a planetas sin estrellas escondidos misteriosamente en Orión: ScienceAlert

Published

on

JWST descubre objetos parecidos a planetas sin estrellas escondidos misteriosamente en Orión: ScienceAlert

Las observaciones del JWST del núcleo de formación estelar de la Nebulosa de Orión nos han proporcionado algo que nunca habíamos visto antes.

Allí, en el Cúmulo del Trapecio, los científicos han descubierto docenas de objetos parecidos a planetas con aproximadamente la masa de Júpiter, no unidos a una estrella, desplazándose a través de la galaxia en pares gravitacionalmente unidos, como si fuera algo perfectamente normal.

Pero no es el caso. No se conoce ningún mecanismo de formación que pueda conducir a estas masas binarias, y mucho menos a 42 de ellas.

A medida que encontramos más y más mundos alienígenas en la Vía Láctea, resulta cada vez más claro que nuestra comprensión de cómo surgieron los planetas tiene serias lagunas. Entonces, qué son estos objetos y de dónde vienen podría ayudarnos a aprender más sobre cómo se formaron las estrellas y los planetas.

Los astrónomos Samuel Pearson Mark McCaughrean de la Agencia Espacial Europea los llamaron Objetos Binarios de Masa de Júpiter, o JuMBO, y los describió en un artículo preimpreso que fue sometido a Naturaleza.

El núcleo de Orión, visto a través del canal NIRCam de longitud de onda larga del JWST. (NASA, ESA, CSA/M. McCaughrean, S. Pearson)

Se cree que estos entornos de formación de estrellas podría ser examinado con lo que llamamos exoplanetas rebeldes: aquellos que se han desprendido de sus estrellas. De hecho, un gran número de estrellas muy cercanas entre sí pueden alterar los sistemas planetarios bebés de cada una. Las simulaciones sugieren que los exoplanetas no deseados podrían ser increíblemente comunes.

Además, la existencia de objetos de masa planetaria que flotan libremente en Orión no es una sorpresa. Los astrónomos han sido detectándolos durante décadasa una masa de aproximadamente tres veces la de Júpiter.

READ  Nike toma el espacio de H&M en NorthPark

Pero para objetos más pequeños que Orión, la detección plantea un enorme desafío. El fondo de Orión es muy brillante; y los objetos pequeños con masa planetaria son relativamente fríos y emiten la mayor parte de su luz en el infrarrojo térmico.

Esto sin embargo, Aquí es donde brilla JWST. Construido para detectar luz infrarroja, el poderoso telescopio espacial nos ha brindado las observaciones más detalladas de Orión hasta la fecha.

Entonces Pearson y McCaughrean fueron a buscar pequeñas cosas. Pero lo que encontraron desafió todas las expectativas.

«Hemos estado buscando estos objetos muy pequeños y los estamos encontrando. Los estamos encontrando tan pequeños como la masa de Júpiter, o incluso la mitad de la masa de Júpiter, flotando libremente, no unidos a una estrella», dijo McCaughrean. . Hannah Devlin dijo El guardián.

«La física dice que ni siquiera se pueden crear objetos tan pequeños. Queríamos ver si podemos romper la física. Y creo que lo hicimos, lo cual es bueno».

Los JuMBO tienen alrededor de un millón de años, con temperaturas que rondan los 1.000 Kelvin (unos 700 grados Celsius) y separaciones orbitales de entre 25 y 390 veces la distancia entre la Tierra y el Sol. El análisis de la tenue luz que desprenden revela notas de vapor de agua, monóxido de carbono y metano. Hasta ahora todo es normal para un bebé gigante gaseoso.

El problema con los JuMBO es el hecho de que vienen de dos en dos. Un exoplaneta solitario y rebelde que hace lo suyo es una cosa. Pero dos objetos de masa planetaria unidos gravitacionalmente son realmente difíciles de explicar.

READ  Alineación del telescopio espacial James Webb de la NASA completada: captura de imágenes nítidas y enfocadas
El cúmulo trapezoide. (NASA, ESA, CSA/M. McCaughrean, S. Pearson)

Verá, las estrellas se forman cuando un grupo de materia en una nube molecular colapsa bajo la influencia de la gravedad. A medida que giran, atraen más material de la nube que los rodea, lo que forma un disco que alimenta la estrella. Durante este proceso, el disco puede romperse, dando como resultado la formación de una segunda estrella; así nace una estrella binaria.

Pero el límite de masa inferior teórico para un objeto que se forma a través de este escenario de formación de colapso de nubes es de aproximadamente tres masas de Júpiter. Los objetos más pequeños, como los planetas, se forman en el disco de material que rodea la estrella.

Las simulaciones sugieren que estos planetas bebés pueden ser expulsados ​​de su sistema muy fácilmente, ya sea mediante interacciones planeta-planeta o interacciones estrella-estrella. Pero los mecanismos implicados en esta eyección no favorecen el mantenimiento de pares de planetas juntos.

Es posible que planetas aislados expulsados ​​se encuentren y queden unidos gravitacionalmente, pero esperamos que esto sea bastante raro. Detectar 42 de estos pares, como se señala en el artículo de Pearson y McCaughrean, sugiere que nos estamos perdiendo algo fundamental.

«Aún no está claro cómo pueden ser expulsados ​​simultáneamente pares de planetas jóvenes y permanecer unidos, aunque sea débilmente en separaciones relativamente grandes», escriben los investigadores en su artículo.

«Todo objetos de masa planetaria y los JuMBO que vemos en el cúmulo trapecio podrían resultar de una mezcla de estos dos escenarios «clásicos», aunque ambos tienen importantes salvedades, o quizás un mecanismo de formación nuevo y bastante distinto, como la fragmentación de un disco sin estrellas. , se requiere.»

READ  West Knox Senior Center celebra un nuevo espacio

El estudio que describe JuMBO está disponible en el servidor de preimpresión. arXiv.org.

Continue Reading

Horoscopo

Rompiendo la aproximación de Born-Oppenheimer: experimentos descubren un fenómeno cuántico teorizado durante mucho tiempo

Published

on

Rompiendo la aproximación de Born-Oppenheimer: experimentos descubren un fenómeno cuántico teorizado durante mucho tiempo

Una molécula que contiene dos átomos de platino absorbe un fotón y comienza a vibrar. La vibración permite que el giro electrónico de la molécula se invierta, lo que permite que el sistema cambie simultáneamente los estados electrónicos en un fenómeno llamado cruce entre sistemas. Crédito: Laboratorio Nacional Argonne

Láseres y rayos X ultrarrápidos han revelado el acoplamiento entre la dinámica electrónica y nuclear de las moléculas.

Hace casi un siglo, los físicos Max Born y J. Robert Oppenheimer desarrollaron una hipótesis sobre cómo funciona la mecánica cuántica dentro de las moléculas. Estas moléculas están formadas por sistemas complejos de núcleos y electrones. La aproximación de Born-Oppenheimer postula que los movimientos de los núcleos y los electrones dentro de una molécula ocurren de forma independiente y pueden tratarse por separado.

Este modelo funciona la gran mayoría de las veces, pero los científicos están poniendo a prueba sus límites. Recientemente, un equipo de científicos demostró el fracaso de esta hipótesis en escalas de tiempo muy rápidas, revelando una estrecha relación entre la dinámica de los núcleos y los electrones. Este descubrimiento podría influir en el diseño de moléculas útiles para la conversión de energía solar, la generación de energía, la ciencia de la información cuántica y más.

El equipo, compuesto por científicos del Laboratorio Nacional Argonne del Departamento de Energía de EE. UU. (DOE), la Universidad Northwestern, la Universidad Estatal de Carolina del Norte y la Universidad de Washington, publicó recientemente su descubrimiento en dos artículos relacionados en Naturaleza Y Edición internacional Angewandte Chemie.

«Nuestro trabajo revela la interacción entre la dinámica del espín de los electrones y la dinámica vibratoria de los núcleos de las moléculas en escalas de tiempo ultrarrápidas», dijo Shahnawaz Rafiq, investigador asociado de Northwestern University y primer autor de Naturaleza papel. «Estas propiedades no pueden tratarse de forma independiente: se mezclan y afectan la dinámica electrónica de formas complejas».

Un fenómeno llamado efecto vibrónico de espín ocurre cuando los cambios en el movimiento de los núcleos de una molécula afectan el movimiento de sus electrones. Cuando los núcleos vibran dentro de una molécula, ya sea debido a su energía intrínseca o debido a estímulos externos, como la luz, estas vibraciones pueden afectar el movimiento de sus electrones, lo que a su vez puede cambiar el espín de la molécula, una propiedad de la mecánica cuántica vinculada al magnetismo.

En un proceso llamado cruce entre sistemas, una molécula excitada o átomo cambia su estado electrónico invirtiendo la orientación de su espín electrónico. El cruce entre sistemas juega un papel importante en muchos procesos químicos, incluidos los de dispositivos fotovoltaicos, fotocatálisis e incluso animales bioluminiscentes. Para que este cruce sea posible, se requieren condiciones específicas y diferencias de energía entre los estados electrónicos involucrados.

Desde la década de 1960, los científicos han planteado la hipótesis de que el efecto vibrónico de espín podría desempeñar un papel en el cruce entre sistemas, pero observar directamente el fenómeno ha resultado difícil porque implica medir cambios en los estados electrónicos, vibratorios y de espín en objetos muy específicos. tiempos de respuesta rápidos.

“Usamos pulsos de láser ultracortos (hasta siete femtosegundos, o siete millonésimas de milmillonésima de segundo) para rastrear el movimiento de núcleos y electrones en tiempo real, lo que mostró cómo el efecto vibrónico del espín puede conducir al cruce entre sistemas. dijo Lin Chen, miembro distinguido de Argonne, profesor de química en la Universidad Northwestern y coautor correspondiente de ambos estudios. «Comprender la interacción entre el efecto vibrónico de espín y el cruce entre sistemas podría conducir a nuevas formas de controlar y explotar las propiedades electrónicas y de espín de las moléculas».

El equipo estudió cuatro sistemas moleculares únicos diseñados por Félix Castellano, profesor de Universidad Estatal de Carolina del Norte y coautor correspondiente de ambos estudios. Cada uno de los sistemas es similar al otro, pero contienen diferencias controladas y conocidas en sus estructuras. Esto permitió al equipo acceder a efectos cruzados entre sistemas y dinámicas vibratorias ligeramente diferentes para obtener una imagen más completa de la relación.

«Los cambios geométricos que diseñamos en estos sistemas provocaron que los puntos de cruce entre los estados excitados electrónicos que interactúan aparecieran con energías ligeramente diferentes y en diferentes condiciones», dijo Castellano. «Esto proporciona información sobre cómo ajustar y diseñar materiales para mejorar este cruce».

Inducido por el movimiento vibratorio, el efecto vibrónico de espín en las moléculas alteró el panorama energético dentro de las moléculas, aumentando la probabilidad y la tasa de cruce entre sistemas. El equipo también descubrió estados electrónicos intermedios clave que eran parte integral del funcionamiento del efecto vibrónico del espín.

Los resultados fueron predichos y reforzados por cálculos de dinámica cuántica realizados por Xiaosong Li, profesor de química de la Universidad de Washington. Universidad de Washington y científico de laboratorio en el Laboratorio Nacional del Noroeste del Pacífico del DOE. «Estos experimentos mostraron una química muy clara y hermosa en tiempo real que coincidía con nuestras predicciones», dijo Li, autor del estudio publicado en Edición internacional Angewandte Chemie.

Los profundos conocimientos revelados por los experimentos representan un paso adelante en el diseño de moléculas capaces de explotar esta poderosa relación mecánico-cuántica. Esto podría resultar particularmente útil para células solares, mejores pantallas electrónicas e incluso tratamientos médicos que dependen de interacciones entre la luz y la materia.

Las referencias:

“La coherencia espín-vibrónica impulsa la conversión singlete-triplete” por Shahnawaz Rafiq, Nicholas P. Weingartz, Sarah Kromer, Felix N. Castellano y Lin X. Chen, 19 de julio de 2023, Naturaleza.
DOI: 10.1038/s41586-023-06233-y

“Revelando trayectorias de estados excitados en superficies de energía potencial con resolución atómica en tiempo real” por Denis Leshchev, Andrew JS Valentine, Pyosang Kim, Alexis W. Mills, Subhangi Roy, Arnab Chakraborty, Elisa Biasin, Kristoffer Haldrup, Darren J. Hsu, Matthew S. Kirschner, Dolev Rimmerman, Matthieu Chollet, J. Michael Glownia, Tim B. van Driel, Felix N. Castellano, Xiaosong Li y Lin X. Chen, 28 de abril de 2023. Angewandte Chemie Edición Internacional.
DOI: 10.1002/anie.202304615

Ambos estudios fueron apoyados por la Oficina de Ciencias del DOE. EL Naturaleza El estudio fue financiado en parte por la Fundación Nacional de Ciencias. Experiencias en el Angewandte Chemie Edición Internacional se llevaron a cabo en Linac Coherent Light Source en el Laboratorio Nacional de Aceleradores SLAC del DOE. Otros autores sobre el Naturaleza El estudio incluye a Nicholas P. Weingartz y Sarah Kromer. Otros autores del artículo publicado en Angewandte Chemie Edición Internacional incluyen a Denis Leshchev, Andrew JS Valentine, Pyosang Kim, Alexis W. Mills, Subhangi Roy, Arnab Chakraborty, Elisa Biasin, Kristoffer Haldrup, Darren J. Hsu, Matthew S. Kirschner, Dolev Rimmerman, Matthieu Chollet, J. Michael Glownia y Tim B. van Driel.

READ  Nike toma el espacio de H&M en NorthPark
Continue Reading

Horoscopo

La NASA extiende la misión New Horizons hasta finales de la década de 2020

Published

on

La NASA extiende la misión New Horizons hasta finales de la década de 2020

La nave espacial New Horizons de la NASA podrá seguir explorando sus exóticos alrededores durante al menos cinco años.

La agencia anunció el viernes (29 de septiembre) que mantendría encendidas las luces de New Horizons mientras volaba sobre el Cinturón de Kuiper, el vasto anillo de cuerpos helados más allá de la órbita de Neptuno.

Continue Reading

Trending