Connect with us

Horoscopo

Guijarros de hielo a la deriva provocan vida planetaria

Published

on

Guijarros de hielo a la deriva provocan vida planetaria

El telescopio espacial James Webb de la NASA ha proporcionado evidencia que respalda la teoría de que los guijarros helados se desplazan hacia adentro desde las partes más frías de los discos protoplanetarios para formar planetas, un proceso ahora confirmado por la observación de las transiciones de vapor de agua.

Los guijarros a la deriva suministran agua a las regiones interiores de los discos de formación de planetas

¿Cómo nacen los planetas? Los científicos han propuesto desde hace mucho tiempo que los guijarros cubiertos de hielo son las semillas de la formación de planetas. Se cree que estos sólidos helados se desplazan hacia la estrella recién nacida desde los confines fríos y exteriores del disco que la rodea. La teoría predice que cuando estos guijarros entraran en la región más caliente, más cercana a la estrella, liberarían cantidades significativas de vapor de agua fría, llevando tanto agua como sólidos a los planetas nacientes.

Ahora el Telescopio espacial James Webb Fue testigo de este proceso en acción, revelando la conexión entre el vapor de agua en el disco interior y los guijarros helados a la deriva del disco exterior. Este descubrimiento abre nuevas e interesantes perspectivas en el estudio de la formación de planetas rocosos.

Dos discos protoplanetarios

El concepto de este artista compara dos tipos típicos de discos de formación de planetas alrededor de estrellas recién nacidas similares al Sol. A la izquierda hay un disco compacto y a la derecha un disco extendido con espacios. Los científicos que utilizaron Webb estudiaron recientemente cuatro discos protoplanetarios: dos compactos y dos extendidos. Los investigadores diseñaron sus observaciones para probar si los discos compactos de formación de planetas contienen más agua en sus regiones internas que los discos expandidos de formación de planetas con espacios. Esto sucedería si los guijarros cubiertos de hielo en los discos compactos se desplazaran más eficientemente hacia regiones cercanas a la estrella y entregaran grandes cantidades de sólidos y agua a los planetas interiores rocosos en formación.
Crédito: NASA, ESA, CSA, Joseph Olmsted (STScI)

Los hallazgos del Telescopio Espacial Webb de la NASA respaldan el proceso de formación de planetas propuesto desde hace mucho tiempo

Los científicos usan NASAEl telescopio espacial James Webb acaba de hacer un descubrimiento revolucionario al revelar cómo se forman los planetas. Al observar el vapor de agua en los discos protoplanetarios, Webb confirmó un proceso físico que implica la deriva de sólidos cubiertos de hielo desde las regiones exteriores del disco hacia el área de los planetas rocosos.

Desde hace mucho tiempo se ha propuesto que los guijarros helados que se forman en las frías regiones exteriores de los discos protoplanetarios (la misma zona donde se originan los cometas en nuestro sistema solar) deberían ser las semillas fundamentales de la formación de planetas. El principal requisito de estas teorías es que los guijarros se desplazan hacia la estrella debido a la fricción en el disco gaseoso, entregando sólidos y agua a los planetas.

Confirmación de predicciones teóricas.

Una predicción fundamental de esta teoría es que cuando las rocas heladas entran en la región más cálida de la «línea de nieve» -donde el hielo se convierte en vapor- deberían liberar grandes cantidades de vapor de agua fría. Esto es exactamente lo que observó Webb.

«Webb finalmente reveló la conexión entre el vapor de agua en el disco interior y la deriva de guijarros helados desde el disco exterior», dijo la investigadora principal Andrea Banzatti de la Universidad Estatal de Texas, San Marcos, en Texas. “¡Este descubrimiento abre perspectivas interesantes para el estudio de la formación de planetas rocosos con Webb! »

Abundancia de agua (espectro de emisión Webb MIRI)

Este gráfico compara los datos espectrales del agua fría y caliente en el disco GK Tau, que es un disco compacto sin anillos, y el disco CI Tau extendido, que tiene al menos tres anillos en diferentes órbitas. El equipo científico utilizó el poder de resolución sin precedentes del MRS (espectrómetro de resolución media) de MIRI para separar los espectros en líneas individuales que exploran el agua a diferentes temperaturas. Estos espectros, visibles en el gráfico superior, revelan claramente un exceso de agua fría en el disco compacto GK Tau, en comparación con el disco grande CI Tau.
El gráfico inferior muestra el exceso de datos de agua fría en el disco compacto GK Tau, al menos los datos de agua fría en el disco CI Tau extendido. Los datos reales, en color violeta, se superponen en un espectro modelo de agua fría. Observe lo bien que se alinean.
Créditos: NASA, ESA, CSA, Leah Hustak (STScI), Andrea Banzatti (Universidad Estatal de Texas)

«Dans le passé, nous avions cette image très statique de la formation des planètes, presque comme s’il existait des zones isolées à partir desquelles les planètes se formaient», a expliqué Colette Salyk, membre de l’équipe du Vassar College de Poughkeepsie , Nueva York. “Ahora tenemos evidencia de que estas áreas pueden interactuar entre sí. Esto también es algo que habría sucedido en nuestro sistema solar.

Aprovechando el poder de Webb

Los investigadores utilizaron el MIRI (Instrumento de infrarrojo medio) de Webb para estudiar cuatro discos, dos compactos y dos extendidos, alrededor de estrellas similares al Sol. Se estima que estas cuatro estrellas tienen entre 2 y 3 millones de años, lo que sólo serían recién nacidos en el tiempo cósmico.

Ambos CD deberían experimentar una deriva efectiva de los guijarros, entregando los guijarros a una distancia equivalente a Neptunola órbita. Por el contrario, los discos extendidos deberían tener sus piedras contenidas en varios anillos hasta seis veces la órbita de Neptuno.

Infografía de deriva de guijarros

Este gráfico es una interpretación de los datos del MIRI de Webb, el instrumento de infrarrojo medio, que es sensible al vapor de agua presente en los discos. Muestra la diferencia entre la deriva de guijarros y el contenido de agua de un disco compacto versus un disco expandido con anillos y espacios. En el disco compacto de la izquierda, a medida que los guijarros cubiertos de hielo se desplazan hacia la región más caliente y más cercana a la estrella, no tienen obstáculos. Cuando cruzan la línea de nieve, su hielo se convierte en vapor y proporciona una gran cantidad de agua para enriquecer los planetas interiores rocosos en formación. A la derecha hay un disco extendido con anillos y espacios. Cuando los guijarros cubiertos de hielo comienzan su viaje hacia el interior, muchos de ellos se encuentran detenidos por los huecos y atrapados en los anillos. Menos piedras heladas pueden cruzar la línea de nieve para llevar agua a la región interior del disco.
Crédito: NASA, ESA, CSA, Joseph Olmsted (STScI)

Las observaciones de Webb fueron diseñadas para determinar si los discos compactos tienen una mayor abundancia de agua en su región interior rocosa, como se esperaba si la deriva de los guijarros es más eficiente y proporciona abundante masa sólida y agua a los planetas interiores. El equipo optó por utilizar el MRS (espectrómetro de resolución media) de MIRI porque es sensible al vapor de agua presente en los discos.

Los resultados confirmaron las expectativas al revelar un exceso de agua fría en los discos compactos, en comparación con los discos grandes.

A medida que los guijarros se desplazan, cada vez que encuentran un aumento de presión (un aumento de presión) tienden a acumularse allí. Estas trampas de presión no necesariamente detienen el arrastre de piedras, pero sí lo dificultan. Esto es lo que parece ocurrir en los discos grandes con anillos y espacios.

Las investigaciones actuales sugieren que los planetas grandes podrían causar anillos de mayor presión, en los que tienden a acumularse guijarros. También podría haber sido un papel de Júpiter en nuestro sistema solar, inhibiendo el suministro de rocas y agua a nuestros planetas interiores pequeños, rocosos y relativamente pobres en agua.

Resolviendo misterios con datos de Webb

Cuando llegaron los datos por primera vez, los resultados resultaron confusos para el equipo de investigación. “Durante dos meses, estuvimos estancados en estos resultados preliminares que nos decían que los discos compactos tenían agua más fría y que los discos grandes tenían agua más caliente en general”, recuerda Banzatti. «Esto no tenía sentido, porque habíamos seleccionado una muestra de estrellas con temperaturas muy similares».

Sólo cuando Banzatti superpuso los datos del disco compacto a los datos del disco grande, la respuesta quedó clara: los discos compactos contienen agua muy fría justo dentro de la línea de nieve, unas diez veces más cerca que la órbita de Neptuno.

«Ahora finalmente vemos sin ambigüedades que es el agua más fría la que tiene un exceso», dijo Banzatti. «¡Esto no tiene precedentes y se debe enteramente al mayor poder de resolución de Webb!»

Los resultados del equipo aparecen en la edición del 8 de noviembre de Cartas de revistas astrofísicas.

Referencia: “JWST revela exceso de agua fría cerca de la línea de nieve en CD, consistente con Cobble Drift” por Andrea Banzatti, Klaus M. Pontoppidan, John S. Carr, Evan Jellison, Ilaria Pascucci, Joan R. Najita, Carlos E. Muñoz- Romero, Karin I. Öberg, Anusha Kalyaan, Paola Pinilla, Sebastiaan Krijt, Feng Long, Michiel Lambrechts, Giovanni Rosotti, Gregory J. Herczeg, Colette Salyk, Ke Zhang, Edwin A. Bergin, Nicholas P. Ballering, Michael R. Meyer y Simon Bruderer, 8 de noviembre de 2023, Cartas de la revista astrofísica..
DOI: 10.3847/2041-8213/acf5ec

El Telescopio Espacial James Webb es el primer observatorio científico espacial del mundo. Webb resuelve los misterios de nuestro sistema solar, mira más allá de los mundos distantes alrededor de otras estrellas y explora las misteriosas estructuras y orígenes de nuestro universo y nuestro lugar en él. Webb es un programa internacional liderado por la NASA con sus socios, la ESA (Agencia Espacial Europea) y la Agencia Espacial Canadiense.

READ  Curiosity Rover descubre extraña roca en Marte que parece una flor

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Los científicos proponen una nueva teoría de la formación continental

Published

on

Los científicos proponen una nueva teoría de la formación continental

Un nuevo estudio realizado por investigadores de Penn State sugiere que los cratones, estructuras antiguas que estabilizan los continentes de la Tierra, se formaron hace unos 3 mil millones de años a través de procesos iniciados por la erosión atmosférica de las rocas, no solo por la aparición de masas continentales estables. Esto desafía los puntos de vista tradicionales y tiene implicaciones para comprender la evolución planetaria y las condiciones adecuadas para la vida.

Antiguas y vastas extensiones de corteza continental, conocidas como cratones, han estabilizado los continentes de la Tierra durante miles de millones de años mediante cambios en las masas terrestres, la formación de montañas y el desarrollo de los océanos. Los científicos de Penn State han sugerido un nuevo mecanismo que podría explicar la formación de cratones hace unos 3 mil millones de años, arrojando luz sobre una cuestión de larga data en la historia geológica de la Tierra.

Los científicos informaron en la revista. Naturaleza que es posible que los continentes no hayan surgido de los océanos de la Tierra como masas continentales estables, caracterizadas por una corteza superior enriquecida en granito. Más bien, la exposición de rocas frescas al viento y la lluvia hace unos 3 mil millones de años desencadenó una serie de procesos geológicos que finalmente estabilizaron la corteza, permitiéndole sobrevivir durante miles de millones de años sin ser destruida ni reajustada.

Los resultados podrían representar una nueva comprensión de cómo evolucionan los planetas potencialmente habitables similares a la Tierra, dijeron los científicos.

Implicaciones para la evolución planetaria

«Para crear un planeta como la Tierra, hay que crear una corteza continental y estabilizarla», dijo Jesse Reimink, profesor asistente de geociencias en Penn State y autor del estudio. “Los científicos han considerado que esto es lo mismo: los continentes se estabilizaron y luego emergieron sobre el nivel del mar, pero lo que estamos diciendo es que estos procesos son distintos.

READ  ¿Qué es la aceleración cósmica y la energía oscura?

Los cratones se extienden más de 150 kilómetros, o 93 millas, desde la superficie de la Tierra hasta el manto superior, donde actúan como la quilla de un barco, manteniendo los continentes flotando al nivel del mar o cerca de él durante todo el tiempo geológico, dijeron los científicos.

La meteorización puede haber concentrado en última instancia elementos productores de calor como uranio, torio y potasio en la corteza poco profunda, permitiendo que la corteza más profunda se enfríe y endurezca. Este mecanismo creó una capa de roca dura y gruesa que podría haber protegido el fondo de los continentes de una mayor deformación, una característica de los cratones, dicen los científicos.

Procesos geológicos y producción de calor.

«La receta para formar y estabilizar la corteza continental implica concentrar estos elementos productores de calor, que pueden considerarse como pequeños motores térmicos, muy cerca de la superficie», dijo Andrew Smye, profesor asociado de geociencias en Penn State y autor del trabajo. . estudiar. “Tenemos que hacer esto porque cada vez que átomo Cuando el uranio, el torio o el potasio se desintegran, liberan calor que puede aumentar la temperatura de la corteza. La corteza caliente es inestable: tiende a deformarse y no se pega.

Cuando el viento, la lluvia y las reacciones químicas destruyeron las rocas de los primeros continentes, los sedimentos y los minerales arcillosos fueron arrastrados a arroyos y ríos y llevados al mar, donde crearon depósitos sedimentarios como esquistos ricos en concentraciones de uranio, torio y potasio. dicen los científicos.

Antiguas rocas metamórficas llamadas gneis

Estas antiguas rocas metamórficas llamadas gneises, encontradas en la costa ártica, representan las raíces de los continentes ahora expuestos en la superficie. Los científicos dijeron que las rocas sedimentarias intercaladas en estos tipos de rocas proporcionarían un motor térmico para estabilizar los continentes. Crédito: Jesse Reimink

Las colisiones entre placas tectónicas enterraron estas rocas sedimentarias en las profundidades de la corteza terrestre, donde el calor radiogénico liberado por las esquistos provocó el derretimiento de la corteza inferior. Los derretimientos flotaron y ascendieron hacia la corteza superior, atrapando elementos productores de calor en rocas como el granito y permitiendo que la corteza inferior se enfriara y endureciera.

READ  Boeing envía por primera vez astronautas de la NASA a la estación espacial

Se cree que los cratones se formaron hace entre 3 y 2.500 millones de años, una época en la que los elementos radiactivos como el uranio se habrían desintegrado aproximadamente al doble de velocidad y habrían liberado el doble de calor que en la actualidad.

El trabajo destaca que la época en que se formaron los cratones a principios de la Tierra Media era particularmente adecuada para los procesos que podrían haber conducido a su estabilidad, dijo Reimink.

«Podemos considerar esto como una cuestión de evolución planetaria», dijo Reimink. “Uno de los ingredientes clave que se necesitan para crear un planeta como la Tierra podría ser la aparición de continentes relativamente temprano en su vida. Porque se van a crear sedimentos radiactivos que están muy calientes y que producirán una corteza continental muy estable que vive alrededor del nivel del mar y es un entorno ideal para que se propague la vida.

Los investigadores analizaron las concentraciones de uranio, torio y potasio en cientos de muestras de rocas del período Arcaico, cuando se formaron los cratones, para evaluar la productividad térmica radiogénica basándose en las composiciones reales de las rocas. Utilizaron estos valores para crear modelos térmicos de formación de cratones.

«Anteriormente, la gente observaba y consideraba los efectos del cambio en la producción de calor radiogénico a lo largo del tiempo», dijo Smye. «Pero nuestro estudio vincula la producción de calor a partir de rocas con la aparición de continentes, la generación de sedimentos y la diferenciación de la corteza continental».

Los cratones, que normalmente se encuentran en el interior de los continentes, contienen algunas de las rocas más antiguas de la Tierra, pero siguen siendo difíciles de estudiar. En áreas tectónicamente activas, la formación de un cinturón montañoso podría sacar a la superficie rocas que alguna vez estuvieron enterradas a gran profundidad.

READ  Los datos satelitales revelan un paisaje antiguo preservado debajo de la capa de hielo de la Antártida Oriental

Pero los orígenes de los cratones siguen siendo profundamente subterráneos e inaccesibles. Los científicos dijeron que el trabajo futuro implicaría tomar muestras del interior de cratones antiguos y, tal vez, perforar núcleos para probar su modelo.

«Estas rocas sedimentarias metamorfoseadas que se han derretido y han producido granitos que concentran uranio y torio son como cajas negras que registran la presión y la temperatura», dijo Smye. «Y si podemos desbloquear estos archivos, podremos probar las predicciones de nuestro modelo sobre la trayectoria de vuelo de la corteza continental».

Referencia: “La erosión subaérea condujo a la estabilización de los continentes” por Jesse R. Reimink y Andrew J. Smye, 8 de mayo de 2024, Naturaleza.
DOI: 10.1038/s41586-024-07307-1

Penn State y la Fundación Nacional de Ciencias de EE. UU. financiaron este trabajo.

Continue Reading

Horoscopo

¿Qué causa los diferentes colores de las auroras? Un experto explica el arcoíris eléctrico

Published

on

¿Qué causa los diferentes colores de las auroras?  Un experto explica el arcoíris eléctrico

La semana pasada, una erupción solar masiva envió una ola de partículas energéticas del Sol al espacio. Durante el fin de semana, la ola llegó a la Tierra y personas de todo el mundo pudieron ver auroras inusualmente vívidas en ambos hemisferios.

Aunque la aurora normalmente sólo es visible cerca de los polos, fue vista este fin de semana. tan al sur como Hawaii en el hemisferio norte y tan al norte como Mackay En el sur.

Este espectacular pico de actividad auroral parece haber terminado, pero no te preocupes si te lo perdiste. El Sol se acerca a su punto máximo Ciclo de manchas solares de 11 añosy se espera que regresen períodos de intensa aurora durante el próximo año.

Si viste la aurora o alguna de las fotos, quizás te preguntes qué estaba pasando exactamente. ¿Qué hace que el brillo y los diferentes colores? La respuesta está en los átomos, en cómo se excitan y cómo se relajan.

Cuando los electrones se encuentran con la atmósfera.

Las auroras son causadas por partículas subatómicas cargadas (principalmente electrones) que chocan contra la atmósfera terrestre. Estos son emitidos por el Sol constantemente, pero son más numerosos durante los periodos de mayor actividad solar.

La mayor parte de nuestra atmósfera está protegida de la entrada de partículas cargadas por el campo magnético de la Tierra. Pero cerca de los polos, pueden colarse y causar estragos.

La atmósfera terrestre contiene aproximadamente un 20% de oxígeno y un 80% de nitrógeno, con algunas trazas de otros elementos como agua, dióxido de carbono (0,04%) y argón.

La aurora de mayo de 2024 también fue visible en la región de Emilia-Romaña en el norte de Italia.
Luca Argalia/Flickr, CC BY-NC-SA

Cuando los electrones de alta velocidad chocan con moléculas de oxígeno en la atmósfera superior, dividen las moléculas de oxígeno (O₂) en átomos individuales. La luz ultravioleta del Sol también hace esto, y los átomos de oxígeno generados pueden reaccionar con las moléculas de O₂ para producir ozono (O₃), la molécula que nos protege de los dañinos rayos UV.

READ  El equipo de robótica de la NASA probará el robot humanoide Valkyrie en Australia

Pero en el caso de la aurora boreal, los átomos de oxígeno generados están en un estado excitado. Esto significa que los electrones de los átomos están dispuestos de forma inestable y pueden “relajarse” liberando energía en forma de luz.

¿Qué da luz verde?

Como se ve en los fuegos artificiales, los átomos de diferentes elementos producen diferentes colores de luz cuando se les activa.

Los átomos de cobre dan luz azul, el bario es verde y los átomos de sodio producen un color amarillo anaranjado que quizás también hayas visto en las antiguas farolas de la calle. Estas emisiones están «permitidas» por las reglas de la mecánica cuántica, lo que significa que ocurren muy rápidamente.

Cuando un átomo de sodio está en estado excitado, sólo permanece allí durante unas 17 milmillonésimas de segundo antes de emitir un fotón de color amarillo anaranjado.

Pero, en la aurora boreal, muchos átomos de oxígeno se crean en estados excitados sin ninguna forma «permitida» de relajarse emitiendo luz. Sin embargo, la naturaleza encuentra un camino.

Un cielo nocturno moteado con luces verdes brillantes y rayas rosadas sobre ellas.
Aurora australis visible desde Oatlands, Tasmania, el 11 de mayo de 2024.
Imagen AAP/Ethan James

La luz verde que domina la aurora es emitida por átomos de oxígeno que se relajan desde un estado llamado “¹S” a un estado llamado “¹D”. Este es un proceso relativamente lento, que toma en promedio casi un segundo completo.

De hecho, esta transición es tan lenta que generalmente no ocurrirá con el tipo de presión atmosférica que vemos a nivel del suelo, porque el átomo excitado habrá perdido energía al chocar con otro átomo antes de que tenga la oportunidad de enviar un bonito mensaje verde. fotón. Pero en las capas superiores de la atmósfera, donde la presión atmosférica es menor y por tanto hay menos moléculas de oxígeno, tienen más tiempo antes de chocar y por tanto tienen posibilidades de liberar un fotón.

READ  Los lados cercano y lejano de la luna son sorprendentemente diferentes. Un nuevo estudio arroja luz sobre el misterio

Por esta razón, los científicos tardaron mucho en comprender que la luz verde de las auroras provenía de átomos de oxígeno. El brillo amarillo anaranjado del sodio se conoció en la década de 1860, pero no fue hasta la década de 1920 que científicos canadienses Entendí que el verde de la aurora se debía al oxígeno.

¿Qué hace la luz roja?

La luz verde proviene de la llamada transición «prohibida», que ocurre cuando un electrón en el átomo de oxígeno realiza un salto improbable de un patrón orbital a otro. (Las transiciones prohibidas son mucho menos probables que las permitidas, lo que significa que tardan más en ocurrir).

Sin embargo, incluso después de emitir este fotón verde, el átomo de oxígeno se encuentra en otro estado excitado sin posibilidad de relajación. La única salida es a través de otra transición prohibida, del estado ¹D al estado ³P, que emite una luz roja.

Esta transición está además prohibida, por así decirlo, y el estado ¹D debe sobrevivir durante unos dos minutos antes de que finalmente pueda romper las reglas y emitir una luz roja. Debido al tiempo necesario, la luz roja sólo aparece a grandes altitudes, donde las colisiones con otros átomos y moléculas son raras.

Además, debido a que hay muy poco oxígeno allí arriba, la luz roja tiende a aparecer sólo durante auroras intensas, como las que acabamos de tener.

Por eso la luz roja aparece encima de la verde. Aunque ambas surgen de relajaciones prohibidas de los átomos de oxígeno, la luz roja se emite mucho más lentamente y es más probable que se apague por colisiones con otros átomos en altitudes más bajas.

READ  Comparación de la tripulación comercial Boeing Starliner y SpaceX Dragon de la NASA

Otros colores y por qué las cámaras los ven mejor

Aunque el verde es el color más común en las auroras boreales y el rojo es el segundo color más común, también hay otros colores. En particular, las moléculas de nitrógeno ionizado (N₂⁺, a las que les falta un electrón y tienen una carga eléctrica positiva) pueden emitir luz azul y roja. Esto puede producir un tinte magenta en altitudes bajas.

Todos estos colores son visibles a simple vista si la aurora es lo suficientemente brillante. Sin embargo, aparecen con más intensidad en el objetivo de la cámara.

Hay dos razones para esto. En primer lugar, las cámaras se benefician de una exposición prolongada, lo que significa que pueden dedicar más tiempo a recoger luz para producir una imagen que nuestros ojos. Como resultado, pueden tomar una imagen en condiciones más oscuras.

La segunda es que los sensores de color de nuestros ojos no funcionan muy bien en la oscuridad, por lo que tendemos a ver en blanco y negro en condiciones de poca luz. Las cámaras no tienen esta limitación.

Pero no te preocupes. Cuando la aurora es lo suficientemente brillante, los colores son claramente visibles a simple vista.



Leer más: ¿Qué son las auroras boreales y por qué vienen en diferentes formas y colores? Dos expertos explican


Continue Reading

Horoscopo

SpaceX alcanza los 6.000 satélites Starlink en órbita tras el lanzamiento del Falcon 9 desde Cabo Cañaveral – Spaceflight Now

Published

on

SpaceX alcanza los 6.000 satélites Starlink en órbita tras el lanzamiento del Falcon 9 desde Cabo Cañaveral – Spaceflight Now
Un cohete Falcon 9 atraviesa el cielo nocturno sobre Florida mientras despega para la misión Starlink 6-58 el 12 de mayo de 2024. Imagen: Adam Bernstein/Spaceflight Now

SpaceX lanzó un lote de 23 satélites Starlink en su cohete Falcon 9 desde la estación espacial de Cabo Cañaveral. La misión eleva el número total de satélites Starlink a 6.000 satélites en órbita. de acuerdo a según cifras publicadas el domingo por el astrónomo y experto en seguimiento orbital Jonathan McDowell.

El despegue de la misión Starlink 6-58 desde el Complejo de Lanzamiento Espacial 40 tuvo lugar a las 8:53 p.m.EDT (00:53 UTC). Este fue el lanzamiento número 34 de Starlink dedicado de SpaceX en 2024.

El propulsor de primera etapa Falcon 9 que respalda esta misión, el B1073 de la flota SpaceX, completó su decimoquinto vuelo. Entre sus misiones anteriores, B1073 lanzó el módulo de aterrizaje lunar HAKUTO-R de ispace, la misión número 27 de Servicios de Reabastecimiento Comercial (CRS-27) de SpaceX y el vuelo compartido Bandwagon-1.

Poco más de ocho minutos después del despegue, B1073 aterrizó en el dron SpaceX, “A Shortfall of Gravitas”. Este fue el aterrizaje de refuerzo número 69 para ASOG y el aterrizaje de refuerzo número 307 para SpaceX hasta la fecha.

SpaceX lanza su cohete Falcon 9 en la misión Starlink 6-58 el 12 de mayo de 2024. Imagen: Michael Cain/Spaceflight Now

La misión tuvo lugar durante un fin de semana de actividad solar histórica que trajo auroras hasta el sur de Florida. El viernes, la Administración Nacional Oceánica y Atmosférica (NOAA) señaló que las sondas de la NOAA habían observado al menos cinco eyecciones de masa coronal. Centro de predicción del clima espacial en este punto.

El domingo por la mañana, el SWPC dijo que una «vigilancia G4 o superior» seguía vigente para el 12 de mayo, señalando que «es posible que vuelvan a ocurrir tormentas geomagnéticas de severas a extremas más tarde hoy».

READ  El equipo de robótica de la NASA probará el robot humanoide Valkyrie en Australia

En una publicación en su sitio de redes sociales X (anteriormente Twitter), Elon Musk dijo que SpaceX está monitoreando de cerca el impacto de las tormentas solares en la constelación Starlink.

Vuelo de la nave espacial 4

La actividad de lanzamiento en Florida también se produce cuando SpaceX se acerca a la cuarta prueba de vuelo integrada de su cohete Starship en el sur de Texas. El Super Heavy Booster (Booster 11) se encuentra actualmente en el Orbital Launch Rack (OLM) y la etapa superior del Barco 29 se preparó para su apilamiento el domingo por la tarde.

Musk dijo en otra publicación que esperaba que IFT-4 estuviera «probablemente dentro de tres a cinco semanas», lo que situaría la misión en la primera quincena de junio.

Mientras la compañía espera la aprobación de la Administración Federal de Aviación (FAA) para el próximo lanzamiento de Starship, la FAA también publicó información que indica que llevará a cabo una evaluación ambiental con respecto a los lanzamientos de Starship en el Complejo de Lanzamiento 39A (LC -39A) del Centro Espacial Kennedy de la NASA.

Están previstas dos reuniones de análisis de alcance en persona para el 12 y 13 de junio en Cabo Cañaveral y Merritt Island, respectivamente, para permitir que el público brinde comentarios sobre la propuesta. Está prevista una reunión virtual para el 17 de junio.

READ  Comparación de la tripulación comercial Boeing Starliner y SpaceX Dragon de la NASA

Si bien se completó una evaluación ambiental final para Starship en septiembre de 2019, la FAA declaró que «SpaceX no ha presentado una solicitud para una licencia de operador de vehículos para operaciones de lanzamiento de Starship-Super Heavy al LC-39A después de completar la EA de 2019; por lo tanto, la FAA no ha tomado medidas federales para adoptar el EA/FONSI de la NASA (hallazgo sin impacto significativo).

La agencia dijo que SpaceX ahora proponer nueva infraestructura de lanzamiento que no formó parte de EA 2019 y apunta a realizar hasta 44 lanzamientos por año. SpaceX también realizaría aterrizajes de propulsores Super Heavy y Starship en el LC-39A o drones para misiones reutilizables o los desecharía en el océano para misiones prescindibles.

Continue Reading

Trending