Connect with us

Horoscopo

Se verifica la rotación de un agujero negro supermasivo: brilla la teoría de la relatividad general de Einstein

Published

on

Se verifica la rotación de un agujero negro supermasivo: brilla la teoría de la relatividad general de Einstein

Representación esquemática del modelo de disco de acreción inclinado. En esta ilustración se supone que el eje de rotación del agujero negro es recto hacia arriba y hacia abajo. La dirección del chorro es casi perpendicular al plano del disco. La desalineación entre el eje de rotación del agujero negro y el eje de rotación del disco provoca la precesión del disco y del chorro. Crédito: Yuzhu Cui et al. (2023), Untouchable Lab@Openverse y Zhejiang Lab

La galaxia M87 agujero negro presenta un chorro oscilante, lo que confirma su rotación, como lo infiere un estudio de dos décadas alineado con las predicciones de la teoría general de la relatividad de Einstein.

La cercana radiogalaxia M87, situada a 55 millones de años luz de la Tierra y que alberga un agujero negro 6.500 millones de veces más masivo que el Sol, presenta un chorro oscilante que oscila hacia arriba y hacia abajo con una amplitud de unos 10 grados, lo que confirma la existencia del agujero negro. hipótesis. rotación.

El estudio, dirigido por el investigador chino Dr. Yuzhu Cui y publicado en Naturaleza El 27 de septiembre fue realizado por un equipo internacional utilizando una red global de radiotelescopios.

«Este monstruoso agujero negro de hecho está girando». — Dr. Kazuhiro Hada

Mediante un análisis exhaustivo de los datos del telescopio desde 2000 hasta 2022, el equipo de investigación reveló un ciclo recurrente de 11 años en el movimiento de precesión de la base del jet, como lo predijo la teoría de la relatividad general de Einstein. El estudio vincula la dinámica del chorro con el agujero negro supermasivo central, ofreciendo evidencia de que el agujero negro de M87 está girando.

Fenómenos de agujeros negros supermasivos

Los agujeros negros supermasivos en los centros de galaxias activas (los objetos celestes más perturbadores de nuestro universo) pueden acumular enormes cantidades de materia debido a la extraordinaria fuerza gravitacional y el poder de plasma Corrientes salientes, llamadas chorros, que se acercan a la velocidad de la luz y se extienden miles de años luz.

El mecanismo de transferencia de energía entre los agujeros negros supermasivos y sus discos de acreción y chorros relativistas ha intrigado a físicos y astrónomos durante más de un siglo. Una importante teoría sugiere que se puede extraer energía de un agujero negro en rotación, permitiendo que parte de la materia que rodea al agujero negro supermasivo sea expulsada con gran energía. Sin embargo, la rotación de los agujeros negros supermasivos, un factor crucial en este proceso y el parámetro más fundamental además de la masa del agujero negro, no se había observado directamente.

Estructura Jet M87 más adecuada

Panel superior: estructura del chorro M87 a 43 GHz, según datos de apilamiento semestrales observados entre 2013 y 2018. Las flechas blancas indican el ángulo de posición del chorro en cada subtrama. Panel inferior: resultados de mejor ajuste basados ​​en la imagen apilada anual de 2000 a 2022. Los puntos verde y azul se obtuvieron de observaciones a 22 GHz y 43 GHz, respectivamente. La línea roja representa el mejor ajuste según el modelo de precesión. Crédito: Yuzhu Cui y otros, 2023

Centrarse en M87

En este estudio, el equipo de investigación se centró en M87, donde se observó el primer chorro astrofísico observacional en 1918. Gracias a su proximidad, las regiones de formación de chorros cercanas al agujero negro se pueden resolver en detalle mediante interferometría de línea de base muy larga (VLBI). como se muestra en imágenes recientes de las sombras de los agujeros negros tomadas con el Telescopio del Horizonte de Sucesos (EHT). Al analizar los datos VLBI de M87 obtenidos durante los últimos 23 años, el equipo detectó el chorro de precesión periódica en su base, lo que proporcionó información sobre el estado del agujero negro central.

Dinámica y relatividad de los agujeros negros.

En el centro de este descubrimiento está la pregunta crucial: ¿qué fuerza en el universo puede cambiar la dirección de un chorro tan poderoso? La respuesta podría estar oculta en el comportamiento del disco de acreción, una configuración vinculada al agujero negro supermasivo central.

A medida que los materiales orbitan alrededor del agujero negro debido a su momento angular, forman una estructura similar a un disco antes de rodar gradualmente hacia adentro hasta que son fatalmente atraídos hacia el agujero negro. Sin embargo, si el agujero negro gira, ejerce un impacto significativo en el espacio-tiempo circundante, provocando que los objetos cercanos se muevan a lo largo de su eje de rotación, un fenómeno conocido como «frame-dragging», predicho por la teoría de la relatividad general de Einstein.

“Estamos encantados con este importante descubrimiento. » — Yuzhu Cui

El extenso análisis del equipo de investigación indica que el eje de giro del disco de acreción se desalinea con el eje de giro del agujero negro, lo que genera un chorro de precesión. La detección de esta precesión proporciona evidencia inequívoca de que el agujero negro supermasivo M87 está efectivamente girando, mejorando así nuestra comprensión de la naturaleza de los agujeros negros supermasivos.

«Estamos entusiasmados con este importante descubrimiento», afirmó Yuzhu Cui, investigador postdoctoral en el Laboratorio Zhejiang, un instituto de investigación en Hangzhou, y autor principal y correspondiente del artículo. «Dado que la desalineación entre el agujero negro y el disco es relativamente pequeña y el período de precesión es de unos 11 años, la acumulación de datos de alta resolución que rastrean la estructura de M87 durante dos décadas y un análisis exhaustivo son esenciales para lograr este objetivo».

«Después del éxito de la obtención de imágenes de agujeros negros en esta galaxia con el EHT, si este agujero negro está rotando ha sido una preocupación central entre los científicos», añadió el Dr. Kazuhiro Hada del Observatorio Astronómico Nacional de Japón. “Hoy la anticipación se ha convertido en certeza. De hecho, este monstruoso agujero negro está girando.

Contribuciones e implicaciones futuras

Este trabajo utilizó un total de 170 épocas de observaciones obtenidas por la Red VLBI de Asia Oriental (EAVN), la Red de Línea de Base Muy Larga (VLBA), la Red Conjunta de KVN y VERA (KaVA) y de Asia Oriental hasta Italia. Red Global (COMER). En total, más de 20 telescopios de todo el mundo contribuyeron a este estudio.

Los radiotelescopios chinos también contribuyeron a este proyecto, en particular el radiotelescopio chino Tianma de 65 metros, con su enorme plato y su alta sensibilidad a las longitudes de onda milimétricas. Además, el radiotelescopio de 26 metros de Xinjiang mejora la resolución angular de las observaciones del EAVN. Para lograr este objetivo son esenciales datos de buena calidad, con alta sensibilidad y alta resolución angular.

“El radiotelescopio Shigatse de 40 metros integrado en el edificio del Observatorio Astronómico de Shanghai mejorará aún más la capacidad de obtención de imágenes de precisión milimétrica de EAVN. En particular, la meseta tibetana, donde está ubicado el telescopio, tiene una de las condiciones más excelentes para observaciones de longitudes de onda (sub)milimétricas. Esto cumple con nuestras expectativas de promover instalaciones submilimétricas nacionales para observaciones astronómicas”, dijo el profesor Zhiqiang Shen, director del Observatorio Astronómico de Shanghai de la Academia de Ciencias de China.

Si bien este estudio arroja luz sobre el misterioso mundo de los agujeros negros supermasivos, también presenta desafíos formidables. La estructura del disco de acreción y el valor exacto de la rotación del agujero negro supermasivo M87 son todavía muy inciertos. Este trabajo también predice que habrá más fuentes con esta configuración, desafiando a los científicos a descubrirlas.

Referencia: “Tobera de chorro de precesión que se conecta a un agujero negro giratorio en M87” por Yuzhu Cui, Kazuhiro Hada, Tomohisa Kawashima, Motoki Kino, Weikang Lin, Yosuke Mizuno, Hyunwook Ro, Mareki Honma, Kunwoo Yi, Jintao Yu, Jongho Park, Wu Jiang, Zhiqiang Shen, Evgeniya Kravchenko, Juan-Carlos Algaba, Xiaopeng Cheng, Ilje Cho, Gabriele Giovannini, Marcello Giroletti, Taehyun Jung, Ru-Sen Lu, Kotaro Niinuma, Junghwan Oh, Ken Ohsuga, Satoko Sawada-Satoh, Bong Won Sohn , Hiroyuki R. Takahashi, Mieko Takamura, Fumie Tazaki, Sascha Trippe, Kiyoaki Wajima, Kazunori Akiyama, Tao An, Keiichi Asada, Salvatore Buttaccio, Do-Young Byun, Lang Cui, Yoshiaki Hagiwara, Tomoya Hirota, Jeffrey Hodgson, Noriyuki Kawaguchi, Jae-Young Kim, Sang-Sung Lee, Jee Won Lee, Jeong Ae Lee, Giuseppe Maccaferri, Andrea Melis, Alexey Melnikov, Carlo Migoni, Se-Jin Oh, Koichiro Sugiyama, Xuezheng Wang, Yingkang Zhang, Zhong Chen, Ju-Yeon Hwang, Dong-Kyu Jung, Hyo-Ryoung Kim, Jeong-Sook Kim, Hideyuki Kobayashi, Bin Li, Guanghui Li, Xiaofei Li, Zhiyong Liu, Qinghui Liu, Xiang Liu, Chung-Sik Oh, Tomoaki Oyama, Duk-Gyoo Roh , Jinqing Wang, Na Wang, Shiqiang Wang, Bo Xia, Hao Yan, Jae-Hwan Yeom, Yoshinori Yonekura, Jianping Yuan, Hua Zhang, Rongbing Zhao y Weiye Zhong, 27 de septiembre de 2023. Naturaleza.
DOI: 10.1038/s41586-023-06479-6

READ  Kourou - Recepción del puerto espacial europeo en Guayana Francesa [Video]

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Descubrimiento sin precedentes en meteoritos desafía los modelos astrofísicos

Published

on

Descubrimiento sin precedentes en meteoritos desafía los modelos astrofísicos

Los investigadores han descubierto una rara partícula de polvo en un meteorito, formada por una estrella distinta de nuestro sol. Utilizando tomografía avanzada con sonda atómica, analizaron la proporción única de isótopos de magnesio de la partícula, revelando su origen a partir de un tipo recientemente identificado de supernova que quema hidrógeno. Este avance proporciona una mejor comprensión de los eventos cósmicos y la formación de estrellas. Crédito: SciTechDaily.com

Los científicos han descubierto una partícula de meteorito con una proporción de isótopos de magnesio sin precedentes, lo que apunta a su origen en una supernova que quema hidrógeno.

La investigación ha descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre formado por una estrella distinta a nuestro sol.

El descubrimiento fue realizado por la autora principal, la Dra. Nicole Nevill y sus colegas durante sus estudios de doctorado en la Universidad de Curtin, quienes actualmente trabajan en el Instituto de Ciencias Lunares y Planetarias en colaboración con NASAen el Centro Espacial Johnson.

Meteoritos y granos presolares

Los meteoritos están formados principalmente por materiales formados en nuestro sistema solar y también pueden contener pequeñas partículas de estrellas nacidas mucho antes que nuestro sol.

Las pistas de que estas partículas, llamadas granos presolares, son reliquias de otras estrellas, se descubren analizando los diferentes tipos de elementos que contienen.

Técnicas analíticas innovadoras

El Dr. Nevill utilizó una técnica llamada átomo Sonda tomográfica para analizar la partícula y reconstruir la química a escala atómica, accediendo a la información escondida en su interior.

«Estas partículas son como cápsulas del tiempo celestes y proporcionan una instantánea de la vida de su estrella madre», dijo el Dr. Nevill.

READ  Kourou - Recepción del puerto espacial europeo en Guayana Francesa [Video]

“Los materiales creados en nuestro sistema solar tienen proporciones de isótopos predecibles: variantes de elementos con diferente número de neutrones. La partícula que analizamos tiene una proporción de isótopos de magnesio distinta de cualquier otra cosa en nuestro sistema solar.

“Los resultados fueron literalmente fuera de este mundo. La proporción de isótopos de magnesio más extrema, de estudios anteriores de granos presolares, fue de alrededor de 1.200. El grano en nuestro estudio tiene un valor de 3.025, que es el valor más alto jamás descubierto.

«Esta proporción de isótopos excepcionalmente alta sólo puede explicarse por la formación de un tipo de estrella recientemente descubierta: una supernova que quema hidrógeno».

Avances en astrofísica

El coautor, el Dr. David Saxey, del Centro John de Laeter en Curtin, dijo que la investigación innova la forma en que entendemos el universo, ampliando los límites de las técnicas analíticas y los modelos astrofísicos.

«La sonda atómica nos proporcionó un gran nivel de detalle al que no habíamos podido acceder en estudios anteriores», afirmó el Dr. Saxey.

“La supernova que quema hidrógeno es un tipo de estrella que se descubrió recientemente, casi al mismo tiempo que estábamos analizando la pequeña partícula de polvo. El uso de la sonda atómica en este estudio proporciona un nuevo nivel de detalle que nos ayuda a comprender cómo se formaron estas estrellas.

Vinculando los resultados de laboratorio con los fenómenos cósmicos

El coautor, el profesor Phil Bland de la Escuela de Ciencias Planetarias y de la Tierra de Curtin, dijo que los nuevos descubrimientos del estudio de partículas raras en meteoritos nos permiten comprender mejor los eventos cósmicos más allá de nuestro sistema solar.

READ  efactory de MSU duplica su espacio de coworking con la expansión de Brick City

«Es simplemente asombroso poder relacionar mediciones a escala atómica en el laboratorio con un tipo de estrella recientemente descubierta».

La investigación titulada “Elemento a escala atómica y estudio isotópico de 25Polvo estelar rico en magnesio procedente de una supernova que quema hidrógeno » fue publicado en el Revista de astrofísica.

Referencia: “Elemento a escala atómica y estudio isotópico de 25Mg-rich Stardust from an H-burning Supernova” por ND Nevill, PA Bland, DW Saxey, WDA Rickard, P. Guagliardo, NE Timms, LV Forman, L. Daly y SM Reddy, 28 de marzo de 2024, La revista de astrofísica.
DOI: 10.3847/1538-4357/ad2996

Continue Reading

Horoscopo

Una nueva era: comienza la campaña de lanzamiento del Ariane 6

Published

on

Una nueva era: comienza la campaña de lanzamiento del Ariane 6

El 5 de julio de 2023, el lanzador Ariane 5 realizó su último vuelo, poniendo así fin a los 27 años de carrera del que fue el primer cohete pesado de Europa. Casi diez meses después, Arianespace vuelve a la plataforma de lanzamiento con su nuevo caballo de batalla avanzado para el transporte pesado: el Ariane 6.

Por primera vez, el núcleo central y los propulsores del Ariane 6 fueron entregados a la plataforma de lanzamiento ELA-4 en Kourou, Guayana Francesa, marcando oficialmente el inicio de la campaña de lanzamiento inaugural.

El miércoles 24 de abril, el núcleo central del cohete, compuesto por el propulsor principal y la etapa superior, fue transportado 800 metros desde el edificio de montaje del lanzador hasta la plataforma ELA-4, donde fue instalado sobre la mesa de lanzamiento mediante una grúa. y con la asistencia de vehículos de guiado automático (AGV).

Durante los dos días siguientes, Arianespace trabajó para entregar los dos propulsores de cohetes de estado sólido P120C del vehículo a la plataforma y luego montarlos en la mesa de lanzamiento a cada lado del núcleo central. Esta es la configuración del Ariane 62 que realizará la primera misión del vehículo.

El primer cohete propulsor sólido Ariane 6 se transporta al sitio de lanzamiento ELA-4 para su integración. (Crédito: ESA/ArianeGroup/CNES)

Al igual que su predecesor, el Ariane 6 tiene un diseño de dos etapas, propulsado por motores que queman hidrógeno líquido y oxígeno líquido. La primera etapa está equipada con un motor Vulcain 2.1, una versión mejorada del motor Vulcain 2 que volaba en el Ariane 5. La segunda etapa, por su parte, está equipada con un motor Vinci de nuevo diseño, capaz de producir 180 kN de empuje en una aspiradora.

READ  Kourou - Recepción del puerto espacial europeo en Guayana Francesa [Video]

Ariane 6 está configurado para volar con un solo par o dos pares de propulsores de cohetes sólidos P120C, que producen un porcentaje importante del empuje total en el despegue. Cada propulsor contiene 142 toneladas de propulsor sólido y puede generar hasta 4.650 kN de empuje.

La capacidad de carga del Ariane 6 varía según la configuración de vuelo utilizada. La versión Ariane 62 que utiliza dos propulsores es capaz de transportar hasta 10.350 kg a la órbita terrestre baja (LEO) y 4.500 kg a la órbita de transferencia geoestacionaria (GTO), mientras que la variante Ariane 64 con cuatro propulsores puede colocar hasta 21.500 kg en órbita baja. Órbita terrestre (LEO). y 11.500 kg en GTO.

«El lanzamiento del Ariane 6 y la restauración del acceso de Europa al espacio son una prioridad absoluta para la ESA a la hora de reanudar los lanzamientos regulares de cohetes desde el puerto espacial europeo», afirmó el director general de la ESA, Josef Aschbacher. “Juntar las etapas del cohete en la plataforma de lanzamiento marca el inicio de una campaña de lanzamiento y muestra que ya casi llegamos; Pronto veremos esta belleza elevarse hacia el cielo.

El siguiente paso en la campaña inicial del Ariane 6 es acoplar los propulsores P120C al núcleo central, actuando como mecanismo de soporte para la pila de lanzamiento. Una vez ensamblados, los equipos realizarán las conexiones mecánicas y eléctricas necesarias.

Luego, para completar el primer Ariane 6, sólo quedará instalar el carenado con las cargas útiles encapsuladas en su interior. Esto tendrá lugar unas semanas antes de la fecha de lanzamiento prevista.

READ  Los astrónomos resuelven el antiguo misterio de la supernova observada en 1181

Estas operaciones de integración de vehículos se llevaron a cabo bajo la jurisdicción primaria de la ESA, con el apoyo de ArianeGroup y la agencia espacial francesa CNES.

«Ver el nuevo lanzador europeo en la plataforma de lanzamiento marca la finalización de años de trabajo en las oficinas de diseño y plantas de producción de ArianeGroup y de todos nuestros socios industriales en Europa», dijo Martin Sion, director ejecutivo de ArianeGroup. “Este evento marca también el inicio de una nueva etapa de la campaña de primeros vuelos, con todos los desafíos y complejidades que esto conlleva. Los miembros de nuestro Space Team Europe están poniendo todo su conocimiento y experiencia para que este primer vuelo sea un completo éxito.

El primer núcleo central de Ariane 6 está a punto de ser integrado. (Crédito: ESA/ArianeGroup/CNES)

Ariane 6 está diseñado para poder lanzar varias configuraciones de misión. Estas podrían variar desde misiones LEO que involucran constelaciones de satélites hasta misiones Galileo de lanzamiento dual en órbita terrestre media (MEO), lanzamiento único y lanzamiento dual de satélites geosincrónicos/geoestacionarios.

Para su primer lanzamiento, Ariane 6 intentará entregar un conjunto de pequeñas cargas útiles y experimentos a LEO para clientes como la ESA, la NASA, universidades europeas y varias empresas comerciales.

Algunas cargas útiles constan de CubeSats, mientras que otras permanecerán unidas a la etapa superior para documentar la misión. Dos cargas útiles regresarán a la Tierra en forma de cápsulas de reentrada, diseñadas para probar nuevos materiales.

Arianespace y la ESA apuntan actualmente a una ventana entre el 15 de junio y el 31 de julio de 2024 para el primer vuelo de Ariane 6.

READ  Este moderno porche de Rockport fue una vez un espacio de rastreo

“El programa Ariane 6 entra ahora en su recta final antes del vuelo inaugural desde el Puerto Espacial Europeo en la Guayana Francesa. La soberanía europea sobre el acceso al espacio vuelve a ser posible gracias al duro trabajo de los equipos de la ESA, ArianeGroup y CNES”, declaró Philippe Baptiste, director general del CNES. “Me gustaría agradecerles y enviarles mis mejores deseos para las etapas finales. ¡Vamos Ariane 6!

(Imagen principal: El primer núcleo central de Ariane 6 se encuentra dentro del edificio móvil del complejo de lanzamiento ELA-4 en Kourou en preparación para su lanzamiento inaugural. Crédito: ESA/ArianeGroup/CNES)

Continue Reading

Horoscopo

Encontrado el indicio más prometedor de vida en otro planeta, cortesía de James Webb

Published

on

Encontrado el indicio más prometedor de vida en otro planeta, cortesía de James Webb

Los científicos se están centrando en detectar sulfuro de dimetilo (DMS) en su atmósfera.

El Telescopio Espacial James Webb (JWST), el telescopio más potente jamás lanzado, está a punto de comenzar una misión de observación crucial en la búsqueda de vida extraterrestre.

Como se informó Los tiempos, El telescopio enfocará un planeta distante que orbita una estrella enana roja, K2-18b, ubicada a 124 años luz de distancia.

K2-18b ha atraído la atención de los científicos debido a su potencial para albergar vida. Se cree que es un mundo cubierto de océanos que es aproximadamente 2,6 veces más grande que la Tierra.

El elemento clave que buscan los científicos es el sulfuro de dimetilo (DMS), un gas con características fascinantes. Según la NASA, en la Tierra el DMS es “producido únicamente por la vida”, principalmente por el fitoplancton marino.

La presencia de DMS en la atmósfera de K2-18b sería un descubrimiento importante, aunque el Dr. Nikku Madhusudhan, astrofísico principal del estudio en Cambridge, advierte contra sacar conclusiones precipitadas. Aunque los datos preliminares del JWST sugieren una alta probabilidad (más del 50%) de la presencia de DMS, se necesitan más análisis. El telescopio pasará ocho horas observando este viernes, seguidas de meses de procesamiento de datos antes de poder encontrar una respuesta definitiva.

La ausencia de un proceso natural, geológico o químico que se sepa que genera DMS en ausencia de vida añade peso al entusiasmo. Sin embargo, incluso si se confirma, la gran distancia de K2-18b presenta un obstáculo tecnológico. Viajando a la velocidad de la nave espacial Voyager (60.000 kilómetros por hora), una sonda tardaría 2,2 millones de años en llegar al planeta.

READ  Kourou - Recepción del puerto espacial europeo en Guayana Francesa [Video]

A pesar de la inmensa distancia, la capacidad del JWST para analizar la composición química de la atmósfera de un planeta mediante el análisis espectral de la luz de las estrellas que se filtra a través de sus nubes proporciona una nueva ventana al potencial de vida más allá de la Tierra. Esta misión tiene el potencial de responder a la antigua pregunta de si estamos realmente solos en el universo.

Las próximas observaciones también pretenden aclarar la existencia de metano y dióxido de carbono en la atmósfera de K2-18b, resolviendo potencialmente el «problema de metano faltante» que ha desconcertado a los científicos durante más de una década. Si bien continúa el trabajo teórico sobre las fuentes no biológicas del gas, se esperan conclusiones definitivas dentro de cuatro a seis meses.

Continue Reading

Trending