Connect with us


Se ha detectado una burbuja ‘impresionante’ de gas caliente zigzagueando alrededor del agujero negro supermasivo de la Vía Láctea



Los astrónomos han detectado signos de un «punto caliente» que orbita Sagitario A*, el agujero negro en el centro de nuestra galaxia.

Los astrónomos han detectado signos de un «punto caliente» que orbita alrededor de Sagitario A*, el[{» attribute=»»>black hole at the center of our galaxy, using the Atacama Large Millimeter/submillimeter Array (ALMA). The finding helps us better understand the enigmatic and dynamic environment of our supermassive black hole.

“We think we’re looking at a hot bubble of gas zipping around Sagittarius A* on an orbit similar in size to that of the planet Mercury, but making a full loop in just around 70 minutes. This requires a mind-blowing velocity of about 30% of the speed of light!” says Maciek Wielgus of the Max Planck Institute for Radio Astronomy in Bonn, Germany. He led the study that was published today (September 22, 2022) in the journal Astronomy & Astrophysics.

The Orbit of the Hot Spot Around Sagittarius A*

This shows a still image of the supermassive black hole Sagittarius A*, as seen by the Event Horizon Collaboration (EHT), with an artist’s illustration indicating where the modeling of the ALMA data predicts the hot spot to be and its orbit around the black hole. Credit: EHT Collaboration, ESO/M. Kornmesser (Acknowledgment: M. Wielgus)

The observations were made with ALMA in the Chilean Andes, during a campaign by the Event Horizon Telescope (EHT) Collaboration to image black holes. ALMA is — a radio telescope co-owned by the European Southern Observatory (ESO). In April 2017 the EHT linked together eight existing radio telescopes worldwide, including ALMA, resulting in the recently released first-ever image of Sagittarius A*. To calibrate the EHT data, Wielgus and his colleagues, who are members of the EHT Collaboration, used ALMA data recorded simultaneously with the EHT observations of Sagittarius A*. To the research team’s surprise, there were more clues to the nature of the black hole hidden in the ALMA-only measurements.

Gracias a ALMA, los astrónomos han encontrado una burbuja de gas caliente girando alrededor de Sagitario A*, el agujero negro en el centro de nuestra galaxia, a un 30 % de la velocidad de la luz.

Afortunadamente, algunos de los avistamientos se realizaron poco después de que se emitiera un estallido o estallido de energía de rayos X desde el centro de nuestra galaxia, que fue detectado por[{» attribute=»»>NASA’s Chandra X-ray Observatory. These kinds of flares, previously observed with X-ray and infrared telescopes, are thought to be associated with so-called ‘hot spots’, hot gas bubbles that orbit very fast and close to the black hole.

“What is really new and interesting is that such flares were so far only clearly present in X-ray and infrared observations of Sagittarius A*. Here we see for the first time a very strong indication that orbiting hot spots are also present in radio observations,” says Wielgus, who is also affiliated with the Nicolaus Copernicus Astronomical Center, in Warsaw, Poland and the Black Hole Initiative at Harvard University, USA.

Este video muestra una animación de un punto caliente, una burbuja de gas caliente, que orbita Sagitario A*, un agujero negro cuatro millones de veces más masivo que nuestro Sol que reside en el centro de nuestro[{» attribute=»»>Milky Way. While the black hole (center) has been directly imaged with the Event Horizon Telescope, the gas bubble represented around it has not: its orbit and velocity are inferred from both observations and models. The team who discovered evidence for this hot spot — using the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner — predicts the gas bubble orbits very close to the black hole, at a distance about five times larger than the black hole’s boundary or “event horizon.”

The astronomers behind the discovery also predict that the hot spot becomes dimmer and brighter as it goes around the black hole, as indicated in this animation. Additionally, they can infer that it takes 70 minutes for the gas bubble to complete an orbit, putting its velocity at an astonishing 30% of the speed of light.

Credit: EHT Collaboration, ESO/L. Calçada (Acknowledgment: M. Wielgus)

“Perhaps these hot spots detected at infrared wavelengths are a manifestation of the same physical phenomenon: as infrared-emitting hot spots cool down, they become visible at longer wavelengths, like the ones observed by ALMA and the EHT,” adds Jesse Vos. He is a PhD student at Radboud University, the Netherlands, and was also involved in this study.

The flares were long thought to originate from magnetic interactions in the very hot gas orbiting very close to Sagittarius A*, and the new findings support this idea. “Now we find strong evidence for a magnetic origin of these flares and our observations give us a clue about the geometry of the process. The new data are extremely helpful for building a theoretical interpretation of these events,” says co-author Monika Moscibrodzka from Radboud University.

First Image of Our Black Hole Sagittarius A*

This is the first image of Sgr A*, the supermassive black hole at the center of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array that linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the event horizon, the boundary of the black hole beyond which no light can escape. Credit: EHT Collaboration

ALMA allows astronomers to study polarized radio emission from Sagittarius A*, which can be used to unveil the black hole’s magnetic field. The team used these observations together with theoretical models to learn more about the formation of the hot spot and the environment it is embedded in, including the magnetic field around Sagittarius A*. Their research provides stronger constraints on the shape of this magnetic field than previous observations, helping astronomers uncover the nature of our black hole and its surroundings.

Milky Way Central Black Hole Location ALMA

This image shows the Atacama Large Millimeter/submillimeter Array (ALMA) looking up at the Milky Way as well as the location of Sagittarius A*, the supermassive black hole at our galactic center. Highlighted in the box is the image of Sagittarius A* taken by the Event Horizon Telescope (EHT) Collaboration. Located in the Atacama Desert in Chile, ALMA is the most sensitive of all the observatories in the EHT array, and ESO is a co-owner of ALMA on behalf of its European Member States. Credit: ESO/José Francisco Salgado (, EHT Collaboration

The observations confirm some of the previous discoveries made by the GRAVITY instrument at ESO’s Very Large Telescope (VLT), which observes in the infrared. The data from GRAVITY and ALMA both suggest the flare originates in a clump of gas swirling around the black hole at about 30% of the speed of light in a clockwise direction in the sky, with the orbit of the hot spot being nearly face-on.

“In the future, we should be able to track hot spots across frequencies using coordinated multiwavelength observations with both GRAVITY and ALMA — the success of such an endeavor would be a true milestone for our understanding of the physics of flares in the Galactic center,” says Ivan Marti-Vidal of the University of València in Spain, co-author of the study.

Milky Way Wide Field View

Wide-field view of the center of the Milky Way. This visible light wide-field view shows the rich star clouds in the constellation of Sagittarius (the Archer) in the direction of the center of our Milky Way galaxy. The entire image is filled with vast numbers of stars — but far more remain hidden behind clouds of dust and are only revealed in infrared images. This view was created from photographs in red and blue light and forming part of the Digitized Sky Survey 2. The field of view is approximately 3.5 degrees x 3.6 degrees. Credit: ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin and S. Guisard (

The team is also hoping to be able to directly observe the orbiting gas clumps with the EHT, to probe ever closer to the black hole and learn more about it. “Hopefully, one day, we will be comfortable saying that we ‘know’ what is going on in Sagittarius A*,” Wielgus concludes.

More information

Reference: “Orbital motion near Sagittarius A* – Constraints from polarimetric ALMA observations” by M. Wielgus, M. Moscibrodzka, J. Vos, Z. Gelles, I. Martí-Vidal, J. Farah, N. Marchili, C. Goddi and H. Messias, 22 September 2022, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202244493

The team is composed of M. Wielgus (Max-Planck-Institut für Radioastronomie, Germany [MPIfR]; Centro Astronómico Nicolaus Copernicus, Academia Polaca de Ciencias, Polonia; Iniciativa Black Hole en la Universidad de Harvard, EE. UU. [BHI]), M. Moscibrodzka (Departamento de Astrofísica, Universidad de Radboud, Países Bajos [Radboud]), J. Vos (Radboud), Z. Gelles (Centro de Astrofísica | Harvard & Smithsonian, EE. UU. y BHI), I. Martí-Vidal (Universitat de València, España), J. Farah (Observatorio de Las Cumbres, EE. UU.; Universidad de California, Santa Bárbara, EE. UU.), N. Marchili (Centro Regional Italiano ALMA, INAF-Istituto di Radioastronomia, Italia y MPIfR), C. Goddi (Dipartimento di Fisica, Università degli Studi di Cagliari, Italia y Universidade de São Paulo, Brasil) y H. Messias (Observatorio Conjunto ALMA, Chile).

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre ESO, la Fundación Nacional de Ciencias (NSF) de los Estados Unidos y los Institutos Nacionales de Ciencias Naturales (NINS) de Japón, en cooperación con la República de Chile. ALMA está financiado por ESO en nombre de sus Estados miembros, por NSF en cooperación con el Consejo Nacional de Investigación de Canadá (NRC) y el Ministerio de Ciencia y Tecnología (MOST), y por NINS en cooperación con Academia Sinica (AS) en Taiwán. . y el Instituto Coreano de Astronomía y Ciencias Espaciales (KASI). La construcción y operaciones de ALMA están dirigidas por ESO en nombre de sus Estados Miembros; por el Observatorio Nacional de Radioastronomía (NRAO), operado por Associated Universities, Inc. (AUI), en nombre de América del Norte; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia Oriental. El Observatorio Conjunto de ALMA (JAO) proporciona dirección y gestión unificadas para la construcción, puesta en marcha y operación de ALMA.

El Observatorio Europeo Austral (ESO) permite a los científicos de todo el mundo descubrir los secretos del Universo para el beneficio de todos. Diseñamos, construimos y operamos observatorios de campo de clase mundial, que los astrónomos utilizan para abordar preguntas interesantes y difundir la fascinación de la astronomía, y promovemos la colaboración internacional en astronomía. Creado como una organización intergubernamental en 1962, ESO cuenta hoy con el apoyo de 16 Estados miembros (Austria, Bélgica, República Checa, Dinamarca, Francia, Finlandia, Alemania, Irlanda, Italia, Países Bajos, Polonia, Portugal, España, Suecia, Suiza y el Reino Unido), así como el estado anfitrión de Chile y Australia como socio estratégico. La sede central de ESO y su centro de visitantes y planetario, ESO Supernova, se encuentran cerca de Munich en Alemania, mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope y su Very Large Telescope Interferometer, así como dos telescopios de sondeo, VISTA trabajando en infrarrojo y el VLT Survey Telescope en luz visible. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. Junto con socios internacionales, ESO opera APEX y ALMA en Chajnantor, dos instalaciones que observan el cielo en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo “el ojo más grande del mundo para mirar el cielo”, el Extremely Large Telescope de ESO. Desde nuestras oficinas en Santiago de Chile, apoyamos nuestras operaciones en el país y nos relacionamos con nuestros socios y la sociedad chilena.

READ  El rover Perseverance llega al antiguo delta del río Marte

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada.


SpaceX cuenta regresivamente para otro lanzamiento de Starlink desde Florida – Spaceflight Now



Cobertura en vivo de la cuenta regresiva y el lanzamiento de un cohete SpaceX Falcon 9 desde el Space Launch Complex 40 en la Estación de la Fuerza Espacial de Cabo Cañaveral en Florida. La misión Starlink 4-35 lanzará el próximo lote de 52 satélites de banda ancha Starlink de SpaceX. siga con nosotros Gorjeo.

DFS en vivo

Otro grupo de 52 satélites de Internet Starlink se pondrá en órbita el sábado por la noche desde Cabo Cañaveral sobre un vehículo de lanzamiento Falcon 9, continuando el despliegue de la red global de banda ancha de SpaceX ahora accesible desde los siete continentes.

El cohete Falcon 9 de 229 pies de altura (70 metros) está programado para despegar de la Estación de la Fuerza Espacial de Cabo Cañaveral a las 7:32:10 pm EDT (23:32:10 GMT) el sábado. SpaceX tiene una hora de lanzamiento de respaldo disponible a las 8:51 p. m. EDT (00:51 GMT).

Los 52 satélites Starlink a bordo del Falcon 9 se sumarán a la red de Internet de baja latencia, alta velocidad y nivel de consumidor de SpaceX. Los suscriptores ahora pueden conectarse a la red Starlink en más de 40 países y territorios.

La Antártida es una de las regiones más nuevas donde está disponible el servicio de Internet Starlink. La Fundación Nacional de Ciencias anunció a principios de este mes que la agencia estaba trabajando con SpaceX para probar el servicio Starlink en la estación McMurdo de la agencia.

«Starlink ahora está activo en todos los continentes, incluidos Antártida”, tuiteó Elon Musk, fundador y CEO de SpaceX.

Con 52 satélites más listos para unirse a la constelación el sábado por la noche, SpaceX estará un paso más cerca de desplegar por completo su flota inicial de 4400 naves espaciales Starlink. Después de la misión del sábado por la noche, SpaceX habrá puesto en órbita 3.399 satélites Starlink, incluidos prototipos y naves espaciales fallidas. Actualmente, la compañía tiene alrededor de 3000 satélites Starlink funcionales en el espacio, con alrededor de 2500 operativos y otros 500 en movimiento en sus órbitas operativas. según una pintura de Jonathan McDowellexperto rastreador de actividad de vuelos espaciales y astrónomo del Centro Harvard-Smithsonian de Astrofísica.

READ  Los investigadores demuestran una ventaja cuántica

El lanzamiento del domingo por la noche, designado Starlink 4-35, será el lanzamiento número 43 del año de SpaceX.

Aproximadamente 15 minutos después del despegue, la etapa superior del cohete Falcon 9 dejará caer los 52 satélites Starlink sobre el Océano Atlántico Norte viajando a una velocidad de alrededor de 17,000 mph.

Starlink 4-35 es la cuarta misión Falcon 9 del mes. SpaceX planea tentativamente otro lanzamiento de Falcon 9 con satélites Starlink adicionales antes de fines de septiembre, pero ese cronograma depende de los impactos potenciales del futuro huracán Ian, que se espera que amenace a Florida la próxima semana.

SpaceX planea completar más de 60 misiones este año, un promedio de un lanzamiento cada seis días.

La tasa de lanzamiento más alta fue facilitada por tiempos de espera más cortos entre misiones en las plataformas de lanzamiento en Florida y California, y la reutilización de SpaceX de los propulsores Falcon 9 y los carenados de carga útil. Los lanzamientos que transportan satélites para la propia red de Internet Starlink de SpaceX, como la misión del sábado por la noche, han representado alrededor de dos tercios de los vuelos Falcon 9 de la compañía en lo que va del año.

El propulsor Falcon 9 que se lanzará el sábado por la noche es el número B1073 en el inventario de cohetes reutilizables de SpaceX. El impulsor debutó el 14 de mayo con un lanzamiento que transportaba satélites Starlink, luego voló nuevamente el 29 de junio con el satélite comercial de comunicaciones SES 22. Más recientemente, el impulsor se lanzó y aterrizó el 9 de agosto en otra misión Starlink. Ahora está listo para volar al espacio por cuarta vez, con otro aterrizaje programado en el dron de SpaceX en el Océano Atlántico.

Crédito: Vuelo espacial ahora

Estacionado dentro de un centro de control de lanzamiento justo al sur de la Estación de la Fuerza Espacial de Cabo Cañaveral para la cuenta regresiva del sábado por la noche, el equipo de lanzamiento de SpaceX comenzará a cargar propulsores de queroseno y oxígeno líquido súper enfriado y densificado en el vehículo Falcon 9 en T-menos 35 minutos.

El helio presurizado también fluirá hacia el cohete en la última media hora de la cuenta regresiva. Durante los últimos siete minutos antes del despegue, los motores principales Merlin del Falcon 9 se acondicionarán térmicamente para el vuelo a través de un procedimiento conocido como «enfriamiento». El sistema de seguridad y guía de alcance del Falcon 9 también se configurará para el lanzamiento.

READ  Conoce tu horóscopo para este miércoles 21 de octubre de 2020

Después del despegue, el cohete Falcon 9 dirigirá sus 1,7 millones de libras de empuje, producidas por nueve motores Merlin, para dirigirse al noreste sobre el Océano Atlántico.

El cohete superará la velocidad del sonido en aproximadamente un minuto y luego apagará sus nueve motores principales dos minutos y medio después del despegue. La etapa de refuerzo saldrá de la etapa superior del Falcon 9, luego disparará pulsos desde los propulsores de gas frío y extenderá las aletas de rejilla de titanio para ayudar a que el vehículo regrese a la atmósfera.

Dos arranques de freno reducirán la velocidad del cohete para aterrizar en la nave no tripulada «A Shortfall Of Gravitas» aproximadamente 400 millas (650 kilómetros) aproximadamente nueve minutos después del despegue.

El carenado de carga útil reutilizable del Falcon 9 se desechará cuando se queme la segunda etapa. Un barco de recuperación también está estacionado en el Atlántico para recuperar las dos mitades del cono de la nariz después de que se hundan bajo los paracaídas.

El aterrizaje de la primera etapa de la misión del domingo tendrá lugar momentos después de que el motor de la segunda etapa del Falcon 9 se apague para poner en órbita los satélites Starlink. La separación de la nave espacial 52 Starlink, construida por SpaceX en Redmond, Washington, del cohete Falcon 9 se ha confirmado en T+plus 15 minutos, 28 segundos.

Varillas de retención liberadas de la pila de carga útil de Starlink, lo que permite que los satélites planos vuelen libremente desde la etapa superior del Falcon 9 a la órbita. Las 52 naves espaciales desplegarán paneles solares y pasarán por etapas de activación automatizadas, luego usarán motores de iones alimentados con criptón para maniobrar en su órbita operativa.

La computadora de guía de Falcon 9 tiene como objetivo desplegar los satélites en una órbita elíptica con una inclinación de 53,2 grados desde el ecuador. Los satélites utilizarán la propulsión a bordo para hacer el resto del trabajo y alcanzar una órbita circular a 540 kilómetros (335 millas) sobre la Tierra.

READ  El halo solar de Marte visto por el rover Perseverance se consideró imposible

Los satélites Starlink volarán en una de las cinco «capas» orbitales con diferentes inclinaciones para la red global de Internet de SpaceX. Después de alcanzar su órbita operativa, los satélites ingresarán al servicio comercial y comenzarán a transmitir señales de banda ancha a los consumidores, quienes pueden comprar el servicio Starlink y conectarse a la red con una terminal terrestre provista por SpaceX.

COHETE: Halcón 9 (B1073.4)

CARGA ÚTIL: 52 satélites Starlink (Starlink 4-35)

SITIO DE LANZAMIENTO: SLC-40, Estación de la Fuerza Espacial de Cabo Cañaveral, Florida

FECHA DE LANZAMIENTO: 24 de septiembre de 2022

HORA DE ALMUERZO: 7:32:10 p. m. EDT (23:32:10 GMT) o 8:51 p. m. EDT (12:51 a. m. GMT)

PRONÓSTICO DEL TIEMPO: 80% de probabilidad de tiempo aceptable; Bajo riesgo de vientos fuertes; Bajo riesgo de condiciones adversas para la recuperación de refuerzo

RECUPERACIÓN DE REFUERZO: Nave no tripulada «A Shortfall Of Gravitas» al este de Charleston, SC


ÓRBITA OBJETIVO: 144 por 209 millas (232 por 337 kilómetros), 53,2 grados de inclinación


  • T+00:00: Despegue
  • T+01:12: Presión de aire máxima (Max-Q)
  • T+02:26: Parada del motor principal de la primera etapa (MECO)
  • T+02:30: Separación de pisos
  • T+02:36: Encendido motor segunda etapa
  • T+02:41: Eliminación de carenado
  • T+06:44: Encendido combustión entrada primera etapa (tres motores)
  • T+07:05: Apagado por quemado de la entrada del primer piso
  • T+08:30: Aterrizaje primera etapa encendido combustión (un motor)
  • T+08:47: Paro motor segunda etapa (SECO 1)
  • T+08:52: Aterrizaje primera etapa
  • T+15:28: Separación de satélites Starlink


  • Lanzamiento número 177 de un cohete Falcon 9 desde 2010
  • Lanzamiento número 185 de la familia de cohetes Falcon desde 2006
  • 4º lanzamiento del propulsor Falcon 9 B1073
  • Lanzamiento del 152º Falcon 9 desde la Costa Espacial de Florida
  • Lanzamiento del 98.º Falcon 9 desde el pad 40
  • 153º lanzamiento total desde la plataforma 40
  • Vuelo 119 de un propulsor Falcon 9 reutilizado
  • 62º lanzamiento dedicado de Falcon 9 con satélites Starlink
  • 43.º lanzamiento de Falcon 9 de 2022
  • 43.º lanzamiento de SpaceX en 2022
  • 41er intento de lanzamiento orbital con base en Cabo Cañaveral en 2022

Envía un correo electrónico al autor.

Siga a Stephen Clark en Twitter: @StephenClark1.

Continue Reading


La NASA cancela el próximo intento de lanzamiento de Artemis I debido a la tormenta tropical



Después de reunirse el sábado por la mañana, el equipo Artemis de la NASA decidió renunciar a la oportunidad de lanzamiento del 27 de septiembre y ahora está preparando la mega pila de cohetes lunares para la reversión.

«Se espera que la tormenta tropical Ian se mueva hacia el norte a través del este del Golfo de México como un huracán el martes, justo frente a la costa suroeste de Florida. También se cubrirá un frente frío en el norte de Florida hacia el sur», dijo la meteoróloga de CNN, Haley Brink. .

«La combinación de estos factores climáticos aumentará la probabilidad de lluvia en gran parte de la península de Florida el martes, incluida el área de Cabo Cañaveral. Se espera que las lluvias y tormentas eléctricas sean abundantes y generalizadas en toda la región. Los vientos con fuerza de tormenta tropical Ian también podrían llegue tan pronto como el martes por la noche al centro de Florida».

Mientras tanto, el cohete del Sistema de Lanzamiento Espacial y la nave espacial Orión continúan en la plataforma de lanzamiento del Centro Espacial Kennedy en Florida.

Los miembros del equipo continúan monitoreando el clima mientras toman una decisión sobre cuándo llevar la pila de cohetes de regreso al edificio de ensamblaje de vehículos en Kennedy. La NASA recibirá información de la Fuerza Espacial de EE. UU., el Centro Nacional de Huracanes y la Administración Nacional Oceánica y Atmosférica para informar su decisión.

Los ingenieros pospusieron su decisión final sobre cuándo retroceder mientras recopilaban datos y análisis adicionales. Si el equipo decidiera hacer retroceder el cohete dentro del edificio, ese proceso comenzaría el domingo por la noche o el lunes temprano.

READ  El Telescopio Webb de la NASA observará exoplanetas, y tienes la opción de nombrarlos

Los preparativos pueden acortar el proceso típico de tres días necesario para llevar la nave espacial de vuelta al interior. Y una vez que el vehículo pasa por encima del transporte de vía lenta, puede tardar 10 horas o más.

La pila de cohetes puede permanecer en la plataforma y soportar vientos de hasta 85 millas por hora (74,1 nudos). Si la pila debe regresar al edificio, puede soportar vientos sostenidos de menos de 46 millas por hora (40 nudos).

El viernes, el equipo de Artemis declaró el 2 de octubre como fecha de lanzamiento de respaldo. Pero es poco probable que se establezca una nueva fecha de lanzamiento hasta que se tome la decisión de revertir.

“La agencia adopta un enfoque por etapas para su proceso de toma de decisiones para permitir que la agencia proteja a sus empleados desplegándose de manera segura a tiempo para satisfacer las necesidades de sus familias mientras protege la posibilidad de avanzar con otra oportunidad de lanzamiento en la ventana actual si el mejora el pronóstico del tiempo”, según un comunicado de la NASA.

Las preocupaciones sobre la formación del sistema climático en el Caribe hacen que las condiciones climáticas sean solo un 20% favorables para un lanzamiento, según un predicciones publicadas por la Fuerza Espacial de EE.UU. el viernes.

Las restricciones de lanzamiento requieren que la misión Artemis I no vuele sobre ninguna precipitación. Las restricciones de lanzamiento están diseñadas para evitar los rayos naturales y provocados por cohetes en los cohetes en vuelo, lo que podría dañar el cohete y poner en peligro la seguridad pública, según la Fuerza Espacial.

READ  Los investigadores demuestran una ventaja cuántica

Los rayos disparados por cohetes se forman cuando un cohete grande vuela a través de un campo eléctrico atmosférico lo suficientemente fuerte, por lo que una nube que no produce rayos naturales aún podría causar rayos disparados por cohetes, según la Fuerza Espacial.

Continue Reading


Los ciclones que rodean los polos de Júpiter aún desconciertan a los científicos espaciales



astronomía de la naturaleza (2022). DOI: 10.1038/s41550-022-01774-0″ ancho=»800″ alto=»530″/>

Imagen infrarroja del hemisferio norte de Júpiter vista por JIRAM. Crédito: astronomía natural (2022). DOI: 10.1038/s41550-022-01774-0

Un equipo de científicos espaciales afiliados a varias instituciones en los Estados Unidos, trabajando con un colega italiano y francés, utilizó modelos para explicar en parte la resistencia de los ciclones que rodean los polos de Júpiter. En su artículo publicado en la revista astronomía naturalel grupo describe cómo analizaron imágenes capturadas por la sonda espacial Juno y usaron lo que aprendieron para crear patrones de aguas poco profundas que podrían explicar, al menos en parte, por qué los ciclones duran tanto.

En 2016, la sonda espacial Juno de la NASA entró en órbita alrededor de Júpiter. A diferencia de otras sondas similares, dio la vuelta al planeta de polo a polo, en lugar de alrededor de su ecuador. Cuando la sonda comenzó a enviar imágenes del planeta desde esta nueva perspectiva, los investigadores que las examinaron encontraron una sorpresa. No solo había un solo ciclón sentado encima de cada uno de los polos, sino que ambos estaban rodeados por múltiples ciclones. Con el tiempo, han llegado otras imágenes de los polos, y los investigadores que los estudian continúan asombrados por la estabilidad de los ciclones: los originales todavía existen y ni siquiera han cambiado de forma. Por supuesto, tal comportamiento no tiene precedentes aquí en la Tierra: los ciclones toman forma, se mueven por un tiempo y luego se disipan. Tal comportamiento dejó a los investigadores luchando por encontrar una explicación razonable de lo que observaron.

Las fotos del polo norte del planeta muestran que hay ocho ciclones que rodean al ciclón central directamente sobre el polo. Los ocho están muy juntos y casi equidistantes del ciclón central y están dispuestos en un patrón octogonal. En este momento, no está claro si los ciclones giran alrededor del centro. Hay una disposición similar en el polo sur, solo que hay solo cinco ciclones, con forma de pentágono. En este nuevo esfuerzo, los investigadores probaron un nuevo enfoque para explicar cómo es que los ciclones permanecen en su lugar durante tanto tiempo y cómo lo hacen sin cambiar su posición o forma.

Les cyclones entourant les pôles de Jupiter déconcertent toujours les scientifiques de l'espace

El trabajo del equipo consistía en analizar imágenes y otros datos de la nave espacial Juno, observando específicamente la velocidad y dirección del viento. Luego tomaron lo que aprendieron y lo usaron para crear patrones de aguas poco profundas y esto los llevó a sugerir que hay un «anillo anticiclónico» de vientos que se mueven en la dirección opuesta a los ciclones, que los mantiene en su lugar. Y si bien eso puede ser cierto, el equipo no pudo encontrar ninguna firma de convección, lo que habría ayudado a explicar cómo se usaba el calor para alimentar los ciclones. Reconocen que se necesitará mucho más trabajo para explicar completamente el comportamiento de los ciclones de Júpiter.

La física oceánica explica los ciclones en Júpiter

Más información:
Andrew P. Ingersoll et al, Vorticidad y divergencia en escalas de hasta 200 km dentro y alrededor de los ciclones polares de Júpiter, astronomía natural (2022). DOI: 10.1038/s41550-022-01774-0

© 2022 Ciencia X Red

Cotizar: Los ciclones que giran alrededor de los polos de Júpiter aún desconciertan a los científicos espaciales (23 de septiembre de 2022) Consultado el 23 de septiembre de 2022 en

Este documento está sujeto a derechos de autor. Excepto para el uso justo con fines de estudio o investigación privados, ninguna parte puede reproducirse sin permiso por escrito. El contenido se proporciona únicamente a título informativo.

READ  Esta catapulta espacial gigante literalmente dispara satélites al espacio
Continue Reading