Connect with us

Horoscopo

¿Qué hay dentro de un agujero negro? El físico utiliza la computación cuántica y el aprendizaje automático para descubrir

Published

on

Enrico Rinaldi, investigador del Departamento de Física de la Universidad de Michigan, utiliza dos métodos de simulación para resolver modelos de matrices cuánticas que pueden describir cómo es la gravedad de un agujero negro. En esta imagen, una representación pictórica del espacio-tiempo curvo conecta los dos métodos de simulación. En la parte inferior, un método de aprendizaje profundo está representado por diagramas de puntos (red neuronal), mientras que el método de circuito cuántico en la parte superior está representado por líneas, cuadrados y círculos (qubits y puertas). Los métodos de simulación se fusionan con cada lado del espacio-tiempo curvo para representar el hecho de que las propiedades de la gravedad emergen de las simulaciones. Rinaldi tiene su sede en Tokio y está alojado en el Laboratorio de Física Cuántica Teórica del Grupo de Investigación Pionera en RIKEN, Wako. Crédito: Enrico Rinaldi/UM, RIKEN y A. Silvestri

Amigo, ¿y si todo lo que nos rodea fuera solo un… holograma?


El hecho es que podría serlo, y un físico de la Universidad de Michigan usa computación cuántica y aprendizaje automático para comprender mejor la idea, llamada dualidad holográfica.

La dualidad holográfica es una conjetura matemática que vincula las teorías de partículas y sus interacciones con la teoría de la gravedad. Esta conjetura sugiere que la teoría de la gravedad y la teoría de las partículas son matemáticamente equivalentes: lo que sucede matemáticamente en la teoría de la gravedad sucede en la teoría de las partículas, y viceversa.

Las dos teorías describen diferentes dimensiones, pero el número de dimensiones que describen difiere en una unidad. Entonces, dentro de la forma de un agujero negro, por ejemplo, la gravedad existe en tres dimensiones, mientras que una teoría de partículas existe en dos dimensiones, en su superficie: un disco plano.

Para visualizar esto, piense en el agujero negro, que distorsiona tiempo espacial por su enorme masa. La gravedad del agujero negro, que existe en tres dimensiones, se conecta matemáticamente con las partículas que bailan sobre él, en dos dimensiones. Por lo tanto, existe un agujero negro en el espacio tridimensional, pero lo vemos atravesado por partículas.

Algunos científicos teorizan que todo nuestro universo es una proyección holográfica de partículas, lo que podría conducir a una teoría cuántica coherente de la gravedad.

«En la teoría de la relatividad general de Einstein no hay partículas, solo hay espacio-tiempo. Y en el modelo estándar de física de partículas no hay gravedad, solo hay partículas», dijo Enrico Rinaldi, investigador del Departamento de Física de la UM. . «La vinculación de las dos teorías diferentes es un problema de larga data en la física, algo que la gente ha estado tratando de hacer durante el último siglo».

En un estudio publicado en la revista PRX cuánticoRinaldi y sus coautores examinan cómo probar la dualidad holográfica utilizando la computación cuántica y el aprendizaje profundo para encontrar el estado de energía más bajo de los problemas matemáticos llamados modelos de matriz cuántica.

Estos modelos de matriz cuántica son representaciones de la teoría de partículas. Debido a que la dualidad holográfica sugiere que lo que sucede matemáticamente en un sistema que representa la teoría de partículas afectará de manera similar a un sistema que representa la gravedad, resolver tal modelo de matriz cuántica podría revelar información sobre la gravedad.

Para el estudio, Rinaldi y su equipo usaron dos modelos matriciales que son lo suficientemente simples para ser resueltos usando métodos tradicionales, pero que exhiben todas las características de los modelos matriciales más complejos usados ​​para describir agujeros negros a través de la dualidad holográfica.

«Esperamos que al comprender las propiedades de esta teoría de partículas a través de los experimentos numéricos, entendamos algo sobre la gravedad», dijo Rinaldi, quien tiene su sede en Tokio y es anfitrión del Laboratorio de Física Cuántica Teórica del Grupo de Investigación Pionera en RIKEN. Wako. . «Desafortunadamente, todavía no es fácil resolver las teorías de partículas. Y ahí es donde las computadoras pueden ayudarnos».

Estos modelos de matriz son bloques de números que representan objetos en la teoría de cuerdas, que es un marco en el que las partículas dentro de las partículas teoría están representados por cadenas unidimensionales. Cuando los investigadores resuelven modelos de matriz como estos, intentan encontrar la configuración específica de partículas en el sistema que representan el estado de energía más bajo del sistema, llamado estado fundamental. En el estado fundamental, nada le sucede al sistema a menos que le agregues algo que lo perturbe.

«Es realmente importante comprender cómo se ve ese estado fundamental, porque luego puedes crear cosas a partir de él», dijo Rinaldi. «Entonces, para un material, conocer el estado fundamental es como saber, por ejemplo, si es un conductor, si es un superconductor, si es realmente fuerte o si es débil. Pero encontrar este estado fundamental entre todos los estados posibles es bastante complicado». una tarea difícil, por lo que utilizamos estos métodos numéricos.

Puedes pensar en los números en modelos matriciales como granos de arena, dice Rinaldi. Cuando la arena está nivelada, este es el estado fundamental del modelo. Pero si hay ondas en la arena, debe encontrar una manera de nivelarlas. Para resolver este problema, los investigadores observaron primero los circuitos cuánticos. En este método, los circuitos cuánticos están representados por cables, y cada qubit, o bit de información cuántica, es un cable. Sobre los cables hay puertas, que son operaciones cuánticas que dictan cómo pasará la información a lo largo de los cables.

“Puedes reproducirlos como música, de izquierda a derecha”, dijo Rinaldi. «Si lo lees como música, básicamente transformas el qubits desde el principio en algo nuevo a cada paso. Pero no sabes qué operaciones realizar sobre la marcha, qué notas tocar. El proceso de agitación modificará todas estas puertas para que tomen la forma correcta, de modo que al final de todo el proceso alcances el estado fundamental. Así que tienes toda esta música, y si la tocas bien, al final del día tienes el estado fundamental».

Luego, los investigadores querían comparar el uso de este método de circuito cuántico con el uso de un método de aprendizaje profundo. El aprendizaje profundo es un tipo de aprendizaje automático que utiliza un enfoque de red neuronal, una serie de algoritmos que intentan encontrar relaciones en los datos, de forma similar a cómo funciona el cerebro humano.

Las redes neuronales se utilizan para diseñar software de reconocimiento facial alimentándose de miles de imágenes de caras, de las que derivan señales faciales particulares para reconocer imágenes individuales o generar nuevas caras de personas que no existen.

En el estudio de Rinaldi, los investigadores definen la descripción matemática del estado cuántico de su modelo de matriz, llamada función de onda cuántica. Luego usan una red neuronal especial para encontrar la función de onda de la matriz con la energía más baja posible, su estado fundamental. Los números en la red neuronal pasan por un proceso iterativo de «optimización» para encontrar el estado fundamental del modelo de matriz, golpeando el cubo de arena para nivelar todos sus granos.

En ambos enfoques, los investigadores pudieron encontrar el estado fundamental de los dos modelos de matriz que examinaron, pero los circuitos cuánticos están limitados por una pequeña cantidad de qubits. El hardware cuántico actual solo puede manejar unas pocas docenas de qubits: agregar líneas a su partitura se vuelve costoso y cuanto más agrega, con menos precisión puede reproducir la música.

«Otros métodos que la gente suele utilizar pueden encontrar la energía del estado fundamental, pero no toda la estructura de la función de onda», dijo Rinaldi. «Hemos mostrado cómo obtener información completa sobre la estado fundamental usando estas nuevas tecnologías emergentes, computadoras cuánticas y aprendizaje profundo.

«Debido a que estas matrices son una posible representación de un tipo particular de agujero negro, si sabemos cómo se organizan las matrices y cuáles son sus propiedades, podemos saber, por ejemplo, cómo se ve un agujero negro en el interior del horizonte de eventos de un negro. ¿De dónde viene? Responder a estas preguntas sería un paso hacia la consecución de un agujero cuántico. teoría de la gravedad

Los resultados, dice Rinaldi, muestran una referencia importante para el trabajo futuro sobre algoritmos de aprendizaje automático y cuánticos que los investigadores pueden usar para estudiar la gravedad cuántica a través de la idea de la dualidad holográfica.

Los coautores de Rinaldi incluyen a Xizhi Han de la Universidad de Stanford; Mohammad Hassan en el City College de Nueva York; Yuan Feng del Colegio de la Ciudad de Pasadena; Franco Nori en UM y RIKEN; Michael McGuigan del Laboratorio Nacional de Brookhaven y Masanori Hanada de la Universidad de Surrey.

A continuación, Rinaldi trabaja con Nori y Hanada para estudiar cómo los resultados de estos algoritmos pueden escalar a matrices más grandes, así como su solidez frente a la introducción de efectos «ruidosos» o interferencias que pueden introducir errores.


Explicar la gravedad sin teoría de cuerdas


Más información:
Enrico Rinaldi et al, Simulaciones de modelos matriciales utilizando computación cuántica, aprendizaje profundo y Lattice Monte Carlo, PRX cuántico (2022). DOI: 10.1103/PRXQuantum.3.010324

Proporcionado por
Universidad de Michigan

Cita: ¿Qué hay dentro de un agujero negro? El físico usa computación cuántica, aprendizaje automático para descubrir (14 de febrero de 2022) Obtenido el 14 de febrero de 2022 de https://phys.org/news/2022-02-black-hole-physicist-quantum-machine.html

Este documento está sujeto a derechos de autor. Excepto para el uso justo con fines de estudio o investigación privados, ninguna parte puede reproducirse sin permiso por escrito. El contenido se proporciona únicamente a título informativo.

READ  China lanzará el módulo central de la estación espacial Heavenly Harmony
Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Hallazgos notables: una nueva investigación revela que la médula espinal puede aprender y recordar

Published

on

Hallazgos notables: una nueva investigación revela que la médula espinal puede aprender y recordar

Una nueva investigación demuestra que la médula espinal puede aprender y recordar movimientos de forma independiente, desafiando las opiniones tradicionales sobre su función y mejorando potencialmente las estrategias de rehabilitación para pacientes con lesiones de la médula espinal.

Una nueva investigación revela que las neuronas de la médula espinal poseen la capacidad de aprender y retener información independientemente del cerebro.

La médula espinal se describe a menudo como un canal simple para transmitir señales entre el cerebro y el cuerpo. Sin embargo, la médula espinal puede aprender y memorizar movimientos por sí sola.

Un equipo de investigadores de Neuro-Electronics Research Flanders (NERF), con sede en Lovaina, detalla cómo dos poblaciones neuronales diferentes permiten que la médula espinal se adapte y recuerde conductas aprendidas de una manera completamente independiente del cerebro. Estos notables descubrimientos, publicados en la revista Ciencia, arrojan nueva luz sobre cómo los circuitos espinales podrían contribuir al control y la automatización del movimiento. Este conocimiento podría resultar relevante para la rehabilitación de personas con lesiones de columna.

La asombrosa plasticidad de la médula espinal

La médula espinal modula y refina nuestras acciones y movimientos integrando diferentes fuentes de información sensorial, sin intervención del cerebro. Además, las células nerviosas de la médula espinal pueden aprender a ajustar diversas tareas de forma autónoma, con suficiente práctica repetitiva. Sin embargo, la forma en que la médula espinal logra esta notable plasticidad ha intrigado a los neurocientíficos durante décadas.

Uno de estos neurocientíficos es la profesora Aya Takeoka. Su equipo en Neuro-Electronics Research Flanders (NERF, un instituto de investigación apoyado por IMEC, KU Leuven y VIB) estudia cómo la médula espinal se recupera de las lesiones explorando cómo se conectan las conexiones nerviosas, cómo funcionan y cambian cuando aprendemos. nuevos movimientos.

READ  Topeka, una organización sin fines de lucro, LLC Omni Circle Group busca abrir un espacio de trabajo compartido

«Aunque tenemos evidencia de 'aprendizaje' dentro de la médula espinal a partir de experimentos que se remontan a principios del siglo XX, la pregunta de qué neuronas están involucradas y cómo codifican esta experiencia de aprendizaje sigue sin respuesta», explica el profesor Takeoka. .

Parte del problema es la dificultad de medir directamente la actividad de neuronas individuales en la médula espinal en animales que no están sedados pero que están despiertos y en movimiento. El equipo de Takeoka aprovechó un modelo en el que los animales entrenan movimientos específicos en cuestión de minutos. Al hacerlo, el equipo descubrió un mecanismo específico del tipo de célula para el aprendizaje de la médula espinal.

Dos tipos de células neuronales específicas

Para comprobar cómo aprende la médula espinal, el estudiante de doctorado Simon Lavaud y sus colegas del laboratorio Takeoka construyeron un dispositivo experimental para medir los cambios de movimiento en ratones, inspirado en métodos utilizados en estudios con insectos. «Evaluamos la contribución de seis poblaciones neuronales diferentes e identificamos dos grupos de neuronas, una dorsal y otra ventral, que median el aprendizaje motor».

«Estos dos conjuntos de neuronas se turnan», explica Lavaud. «Las neuronas dorsales ayudan a la médula espinal a aprender un nuevo movimiento, mientras que las neuronas ventrales la ayudan a recordar y realizar el movimiento más tarde».

“Podemos compararlo con una carrera de relevos dentro de la médula espinal. Las neuronas dorsales actúan como las primeras corredoras, transmitiendo información sensorial esencial para el aprendizaje. Luego, las células ventrales toman el control, asegurando que el movimiento aprendido se recuerde y se ejecute sin problemas.

READ  Greenly Art Space organiza una recaudación de fondos anual con artistas de aquí y del extranjero

Aprendizaje y memoria fuera del cerebro

Los resultados detallados, publicados en Ciencia, ilustran que la actividad neuronal en la médula espinal se asemeja a varios tipos clásicos de aprendizaje y memoria. Será crucial comprender mejor estos mecanismos de aprendizaje, ya que probablemente contribuyan a diferentes formas de aprender y automatizar el movimiento, y también podrían ser relevantes en el contexto de la rehabilitación, explica la profesora Aya Takeoka: «Los circuitos que hemos descrito podrían proporcionar la significa que la médula espinal contribuya al aprendizaje del movimiento y a la memoria motora a largo plazo, los cuales nos ayudan a movernos, no solo con buena salud, sino especialmente durante la recuperación de una lesión en el cerebro o la médula espinal.

Referencia: “Dos clases neuronales inhibidoras gobiernan la adquisición y recuperación de la adaptación sensoriomotora espinal” por Simon Lavaud, Charlotte Bichara, Mattia D'Andola, Shu-Hao Yeh y Aya Takeoka, 11 de abril de 2024, Ciencia.
DOI: 10.1126/ciencia.adf6801

La investigación (equipo) fue apoyada por la Fundación de Investigación de Flandes (FWO), Marie Skłodowska-Curie Actions (MSCA), una beca de doctorado Taiwan-KU Leuven (P1040) y la Fundación de Investigación de la Médula Espinal Wings for Life.

Continue Reading

Horoscopo

En medio de la incertidumbre sobre el cronograma, Boeing despedirá personal en el programa de cohetes SLS

Published

on

En medio de la incertidumbre sobre el cronograma, Boeing despedirá personal en el programa de cohetes SLS
Agrandar / El cohete SLS se ve en su plataforma de lanzamiento en el Centro Espacial Kennedy en agosto de 2022.

Trevor Mahlmann

El jueves, altos funcionarios de Boeing que lideran el programa del Sistema de Lanzamiento Espacial, incluidos David Dutcher y Steve Snell, convocaron una reunión general para los más de 1.000 empleados que trabajan en el cohete.

Los funcionarios anunciaron que habría un número significativo de despidos y reasignaciones de personas que trabajan en el programa, según dos personas familiarizadas con la reunión. Ofrecieron varias razones para las reducciones, incluido el hecho de que los plazos para las misiones lunares Artemis de la NASA que utilizarán el cohete SLS se están desplazando hacia la derecha.

Más tarde el jueves, en un comunicado proporcionado a Ars, un portavoz de Boeing confirmó los recortes de Ars: «Debido a factores externos no relacionados con el desempeño de nuestro programa, Boeing está revisando y ajustando los niveles actuales de dotación del programa del Sistema de Lanzamiento Espacial».

¿Más vale tarde que nunca?

Durante casi una década y media, Boeing ha liderado el desarrollo de la etapa central del enorme cohete SLS que la NASA pretende utilizar para lanzar la nave espacial Orion para sus misiones tripuladas a la Luna.

El contrato ha sido lucrativo para Boeing y ha enfrentado críticas generalizadas a lo largo de los años por su generosidad, ya que la NASA gastó decenas de miles de millones de dólares en el desarrollo de un cohete que reutiliza los motores principales y otros componentes del transbordador espacial. Además, originalmente se suponía que el cohete debutaría a fines de 2016 o 2017, pero en realidad no voló por primera vez hasta noviembre de 2022. Y el inspector general de la NASA a veces ha calificado el manejo del programa por parte de Boeing como un cohete SLS “malo”. «.

READ  Horóscopo semanal: comprueba lo que contienen las estrellas para cada signo

Sin embargo, cuando el cohete SLS debutó hace un año y medio, funcionó excepcionalmente bien al impulsar una nave espacial Orion sin tripulación a la Luna. Tras esta misión, la NASA declaró «operativo» el cohete y Boeing inició la producción del vehículo para futuras misiones que llevarán astronautas a la Luna.

Entonces, en cierto sentido, estas reducciones eran inevitables. Boeing necesitaba muchos recursos para diseñar, desarrollar, probar y escribir software para el cohete. Ahora que la fase de desarrollo ha terminado, es natural que la empresa reduzca sus actividades de desarrollo para la fase principal.

La declaración de Boeing no lo dice, pero las fuentes le dijeron a Ars que los recortes de empleo podrían eventualmente llegar a cientos de empleados. Se distribuirán principalmente en las instalaciones de cohetes de la compañía en Alabama, Luisiana y Florida. Las reducciones afectarán tanto al programa de la etapa central como al programa de exploración Upper Stage, una nueva etapa superior del cohete que también está comenzando a pasar del desarrollo a la producción.

Esperando otros artículos

Cuando Boeing cita «factores externos», se refiere a los diferentes cronogramas del programa Artemis de la NASA. En enero, funcionarios de la agencia espacial anunciaron retrasos de aproximadamente un año para la misión Artemis II, un sobrevuelo lunar tripulado, hasta septiembre de 2025; y Artemis III, un alunizaje, hasta septiembre de 2026. Ninguno de estos cronogramas tampoco está escrito en piedra. Es posible que se produzcan retrasos adicionales para Artemis II, y probablemente para Artemis III, si la NASA se apega a los planes de misión actuales.

Aunque el cohete SLS estará listo según el calendario actual, salvo que se produzca una catástrofe, otros elementos son inciertos. Para Artemis II, la NASA aún no ha resuelto un problema con el escudo térmico de la nave espacial Orion. Este problema debe resolverse antes de que la misión obtenga luz verde para continuar el próximo año.

READ  ¿Los huecos de la galaxia de Andrómeda están llenos de materia oscura? Este telescopio de la NASA podría descubrirlo

Los desafíos son aún mayores para Artemis III. Para esta misión, la NASA necesita un módulo de aterrizaje lunar, proporcionado por SpaceX con su vehículo Starship, además de trajes espaciales para la superficie lunar proporcionados por Axiom Space. Ambos permanecen firmemente en la fase de desarrollo.

Además, la NASA está luchando con desafíos presupuestarios. Por primera vez en más de una década, la agencia enfrenta recortes presupuestarios. Esta semana, el administrador de la agencia espacial, Bill Nelson, dijo al Congreso: «Con menos dinero, tenemos que tomar decisiones muy difíciles». Entre ellos, se podría intentar utilizar la financiación futura de SLS para consolidar otros elementos de Artemis.

Una de las personas cercanas a la reunión interna de Boeing del jueves dijo que la agencia espacial visitó a la compañía a principios de este año y dijo que, de hecho, Boeing recibiría menos financiación a medida que finalizara el desarrollo del SLS. A la empresa se le dio la opción de “ampliar” la financiación que recibiría o hacer una pausa de un año debido a retrasos en la misión Artemisa. Boeing optó por aumentar sus fondos, lo que fue la causa de las reducciones de esta semana.

Sería fácil, pero injusto, culpar a SpaceX y Axiom por los retrasos en futuras misiones Artemis. El Congreso creó el cohete SLS con un proyecto de ley de autorización en 2010, pero Boeing en realidad había recibido financiación para trabajos relacionados. que data de 2007. Por el contrario, la NASA no comenzó a financiar el trabajo en el módulo de aterrizaje lunar Starship hasta finales de 2021, y los trajes espaciales Axiom antes de 2022. En cierto sentido, estos desarrollos son tan exigentes técnicamente como el trabajo en el cohete SLS, si no, más.

READ  Elixir de Juventud: Nuevos descubrimientos sobre envejecimiento y salud

Continue Reading

Horoscopo

'Transformers One' obtiene nueva fecha de lanzamiento y tráiler desde el espacio

Published

on

'Transformers One' obtiene nueva fecha de lanzamiento y tráiler desde el espacio

Paramount y Hasbro animados transformadores uno pospone una semana su estreno en salas para poder aprovechar las pantallas Imax y darse un pequeño respiro de la competencia.

La película ahora se estrenará el 20 de septiembre de este año en lugar del 13 de septiembre. Esto le deja dos semanas fuera del estudio de Sony. Jugo de escarabajo. Jugo de escarabajo.

Paramount reveló el cambio de fecha al lanzar un nuevo tráiler de transformadores uno desde nada menos que el espacio, una novedad en Hollywood, según el estudio. El lanzamiento comenzó a las 6 a. m. PT con una cuenta regresiva en vivo que muestra el viaje al espacio. Después de una hora, la nave alcanzó su apogeo a 125.000 pies sobre la Tierra, lo que revela el avance con un video de introducción personalizado de las estrellas Chris Hemsworth y Brian Tyree Henry.

El reparto repleto de estrellas también incluye a Scarlett Johansson, Keegan-Michael Key y Steve Buscemi, con Laurence Fishburne y Jon Hamm.

transformadores uno – la primera película de Transformers totalmente animada por computadora – se presenta como la historia nunca antes contada del origen de cómo los archienemigos Optimus Prime y Megatron alguna vez fueron amigos unidos como hermanos, y cómo su ruptura final cambió el destino de Cybertron para siempre.

Los propietarios de salas de cine pudieron disfrutar de una vista previa del tráiler la semana pasada en CinemaCon, donde Hemsworth y Henry también mostraron la primera escena de la película en 3D.

Hemsworth le da voz a Orion Pax, un joven Optimus Prime, mientras que Henry, que es D-16, le da voz a un joven Megatron.

READ  Maryland, de 9 años, encuentra un raro diente de tiburón antiguo el día de Navidad: NPR

josh cooley (Historia del juguete 4) dirige la película a partir de un guión de Andrew Barrer y Gabriel Ferrari para Paramount Animation y Hasbro en asociación con New Republic Pictures.

En otras noticias sobre citas, Paramount retrasa su animación sin título Aang: el último maestro del aire Película Avatar del 10 de octubre de 2025 al 30 de enero de 2026.

cartel de youtube
Continue Reading

Trending