Connect with us

Horoscopo

Medición de las «sombras» de dos agujeros negros supermasivos en colisión

Published

on

Medición de las «sombras» de dos agujeros negros supermasivos en colisión

En esta simulación de la fusión de un agujero negro supermasivo, el agujero negro desplazado hacia el azul más cercano al observador amplifica el agujero negro desplazado hacia el rojo detrás mediante lentes gravitacionales. Los investigadores encontraron una fuerte caída en el brillo cuando el agujero negro más cercano pasó frente a la sombra de su contraparte, una observación que podría usarse para medir el tamaño de los dos agujeros negros y probar teorías alternativas de la gravedad. 1 crédito

Dentro de un par de agujeros negros supermasivos fusionados, una nueva forma de medir el vacío

Los científicos han descubierto una forma de medir las «sombras» de dos agujeros negros supermasivos en colisión, dando a los astrónomos una herramienta potencialmente nueva para medir agujeros negros en galaxias distantes y probar teorías alternativas de la gravedad.

Hace tres años, el mundo quedó atónito con la primera imagen de un agujero negro. Un pozo negro de la nada rodeado por un anillo de luz ardiente. Esta imagen icónica de[{» attribute=»»>black hole at the center of galaxy Messier 87 came into focus thanks to the Event Horizon Telescope (EHT), a global network of synchronized radio dishes acting as one giant telescope.

Now, a pair of Columbia researchers have devised a potentially easier way of gazing into the abyss. Outlined in complementary research studies in Physical Review Letters and Physical Review D, their imaging technique could allow astronomers to study black holes smaller than M87’s, a monster with a mass of 6.5 billion suns, harbored in galaxies more distant than M87, which at 55 million light-years away, is still relatively close to our own Milky Way.


Una simulación de lentes gravitacionales en un par de agujeros negros supermasivos fusionados. 1 crédito

La técnica tiene sólo dos requisitos. Primero, necesitas un par de agujeros negros supermasivos que se fusionen. En segundo lugar, debe mirar a la pareja desde un ángulo casi lateral. Desde esta perspectiva lateral, cuando un agujero negro pasa frente a otro, debería poder ver un destello de luz cuando el anillo de luz del agujero negro más lejano es amplificado por el agujero negro más cercano a usted, un fenómeno es lo que se llama lente gravitacional.

El efecto de lente es bien conocido, pero lo que los investigadores descubrieron aquí fue una señal oculta: una caída característica en el brillo correspondiente a la «sombra» del agujero negro en la parte trasera. Este oscurecimiento sutil puede durar desde unas pocas horas hasta unos pocos días, dependiendo de la masa de los agujeros negros y la estrechez de sus órbitas. Si mide la duración de la depresión, dicen los investigadores, puede estimar el tamaño y la forma de la sombra proyectada por el horizonte de eventos del agujero negro, el punto de no salida, donde nada escapa, ni siquiera la luz.

Simulación de fusión de agujeros negros supermasivos

En esta simulación de un par de agujeros negros supermasivos fusionados, el agujero negro más cercano al espectador se acerca y, por lo tanto, aparece azul (imagen 1), magnificando el agujero negro desplazado hacia el rojo por lentes gravitacionales. A medida que el agujero negro más cercano amplifica la luz del agujero negro más lejano (imagen 2), el espectador ve un destello de luz. Pero cuando el agujero negro más cercano pasa por delante del abismo o la sombra del agujero negro más lejano, el espectador ve una ligera caída en el brillo (imagen 3). Esta caída en el brillo (3) es claramente visible en los datos de la curva de luz debajo de las imágenes. 1 crédito

«Se necesitaron años y un esfuerzo considerable por parte de docenas de científicos para crear esta imagen de alta resolución de los agujeros negros de M87», dijo el primer autor del estudio, Jordy Davelaar, becario postdoctoral en Columbia y el Centro de Astrofísica Computacional del Instituto Flatiron. «Este enfoque solo funciona para los agujeros negros más grandes y cercanos: el par en el núcleo de M87 y, potencialmente, nuestra propia Vía Láctea».

Agregó: “Con nuestra técnica, mides el brillo de los agujeros negros a lo largo del tiempo, no tienes que resolver cada objeto en el espacio. Debería ser posible encontrar esta señal en muchas galaxias.

La sombra de un agujero negro es su característica más misteriosa e informativa. «Esta mancha oscura nos informa sobre el tamaño del agujero negro, la forma del espacio-tiempo que lo rodea y cómo la materia cae en el agujero negro cerca de su horizonte», dijo el coautor Zoltan Haiman, profesor de física en Columbia.

Observando la fusión de agujeros negros supermasivos

Al observar una fusión de agujeros negros supermasivos desde un lado, el agujero negro más cercano al espectador magnifica aún más el agujero negro a través de lentes gravitacionales. Los investigadores descubrieron una breve caída en el brillo correspondiente a la «sombra» del agujero negro más distante, lo que permite al espectador medir su tamaño. Crédito: Nicoletta Baroloini

Las sombras de los agujeros negros también pueden contener el secreto de la verdadera naturaleza de la gravedad, una de las fuerzas fundamentales de nuestro universo. La teoría de la gravedad de Einstein, conocida como relatividad general, predice el tamaño de los agujeros negros. Así que los físicos los buscaron para probar teorías alternativas de la gravedad en un esfuerzo por reconciliar dos ideas contrapuestas sobre cómo funciona la naturaleza: la relatividad general de Einstein, que explica los fenómenos a gran escala, como los planetas en órbita y el universo en expansión, y la física cuántica, que explica cómo los pequeños partículas como electrones y fotones pueden ocupar múltiples estados a la vez.

Los investigadores se interesaron en la llamarada de los agujeros negros supermasivos después la localización un presunto par de agujeros negros supermasivos en el centro de una galaxia distante en el universo primitivo.[{» attribute=»»>NASA’s planet-hunting Kepler space telescope was scanning for the tiny dips in brightness corresponding to a planet passing in front of its host star. Instead, Kepler ended up detecting the flares of what Haiman and his colleagues claim are a pair of merging black holes.

They named the distant galaxy “Spikey” for the spikes in brightness triggered by its suspected black holes magnifying each other on each full rotation via the lensing effect. To learn more about the flare, Haiman built a model with his postdoc, Davelaar.

They were confused, however, when their simulated pair of black holes produced an unexpected, but periodic, dip in brightness each time one orbited in front of the other. At first, they thought it was a coding mistake. But further checking led them to trust the signal.

As they looked for a physical mechanism to explain it, they realized that each dip in brightness closely matched the time it took for the black hole closest to the viewer to pass in front of the shadow of the black hole in the back.

The researchers are currently looking for other telescope data to try and confirm the dip they saw in the Kepler data to verify that Spikey is, in fact, harboring a pair of merging black holes. If it all checks out, the technique could be applied to a handful of other suspected pairs of merging supermassive black holes among the 150 or so that have been spotted so far and are awaiting confirmation.

As more powerful telescopes come online in the coming years, other opportunities may arise. The Vera Rubin Observatory, set to open this year, has its sights on more than 100 million supermassive black holes. Further black hole scouting will be possible when NASA’s gravitational wave detector, LISA, is launched into space in 2030.

“Even if only a tiny fraction of these black hole binaries has the right conditions to measure our proposed effect, we could find many of these black hole dips,” Davelaar said.

References:

“Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography” by Jordy Davelaar and Zoltán Haiman, 9 May 2022, Physical Review Letters.
DOI: 10.1103/PhysRevLett.128.191101

“Self-lensing flares from black hole binaries: General-relativistic ray tracing of black hole binaries” by Jordy Davelaar and Zoltán Haiman, 9 May 2022, Physical Review D.
DOI: 10.1103/PhysRevD.105.103010

READ  Los lémures indri indri pueden cantar a diferentes ritmos, encuentra un estudio

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Lanzamiento de SpaceX en el Centro Espacial Kennedy, Cabo Cañaveral: cómo verlo

Published

on

Lanzamiento de SpaceX en el Centro Espacial Kennedy, Cabo Cañaveral: cómo verlo

Continue Reading

Horoscopo

Enterrada en la Nebulosa Pata de Gato se encuentra una de las moléculas espaciales más grandes jamás observadas.

Published

on

Enterrada en la Nebulosa Pata de Gato se encuentra una de las moléculas espaciales más grandes jamás observadas.

Los científicos han descubierto una molécula espacial previamente desconocida mientras investigaban una región relativamente cercana de intenso nacimiento estelar, un punto cósmico a unos 5.550 años luz de distancia. Es parte de la Nebulosa Pata de Gato, también conocida como NGC 6334.

El equipo, dirigido por el estudiante graduado del Instituto Tecnológico de Massachusetts (MIT), Zachary Fried, examinó una sección de la nebulosa conocida como NGC 6334I con el Atacama Large Millimeter/submillimeter Array (ALMA). Esto reveló la presencia de una molécula compleja conocida como 2-metoxietanol, que nunca antes se había observado en el mundo natural, aunque sus propiedades habían sido simuladas en laboratorios en la Tierra.

Continue Reading

Horoscopo

La misión ClearSpace-1 cambia de objetivo en respuesta a una colisión de desechos espaciales

Published

on

La misión ClearSpace-1 cambia de objetivo en respuesta a una colisión de desechos espaciales

Imagen artística de Proba-1 en órbita ©ClearSpace

La misión de eliminación de desechos ClearSpace-1 cambió de objetivo después de detectar una colisión de desechos espaciales del objetivo con desechos imposibles de rastrear. Empresa de eliminación de desechos espaciales Espacio libre anunció la decisión el 24 de abril.

ClearSpace avanzó a la siguiente etapa de la misión ClearSpace-1 después de una revisión técnica y programática con el Agencia Espacial Europea (ESA). El objetivo de escombros se ha modificado para ajustar los requisitos de la misión, simplificar la estructura de su equipo industrial y reducir el riesgo.

Ahora se espera que la nueva misión ClearSpace-1 se encuentre con PROBA-1, una nave espacial de la ESA con capacidades totalmente autónomas que capturará y realizará una maniobra de disminución del perigeo en el veterano satélite espacial de 20 años. La misión utilizará un mecanismo de captura de cuatro brazos para agarrar el satélite cliente y luego reingresar de manera segura a la atmósfera de la Tierra, donde se quemará.

El objetivo inicial de la misión, un adaptador de carga útil VESPA que quedó en órbita durante el lanzamiento de Vega en 2013, era golpeado por otros desechos espaciales el año pasado.

La ESA ha permitido continuar con la fase preparatoria que será ejecutada por un consorcio liderado por la empresa alemana OHB SE, que suministrará el bus satélite y se encargará de la integración y lanzamiento del sistema. ClearSpace proporcionará liderazgo técnico en operaciones de proximidad y captura.

«Nos sentimos honrados de colaborar con OHB y permanecer a la vanguardia del servicio en órbita con la misión ClearSpace-1», dijo Luc Piguet, director ejecutivo de ClearSpace.

READ  Después de la salida de Rusia de Lunar Gateway, la NASA encontró un nuevo socio en los EAU

Continue Reading

Trending