Connect with us

Horoscopo

Los investigadores demuestran una ventaja cuántica

Published

on

Investigadores de la Universidad de Arizona demuestran una ventaja cuántica. Crédito: Universidad de Arizona

La computación cuántica y la detección cuántica tienen el potencial de ser mucho más poderosas que sus contrapartes clásicas. Una computadora cuántica completamente realizada no solo tardaría segundos en resolver ecuaciones que a una computadora convencional le llevaría miles de años, sino que podría tener impactos incalculables en campos que van desde la obtención de imágenes biomédicas hasta la conducción autónoma.


Sin embargo, la tecnología aún no está allí.

De hecho, a pesar de las teorías ampliamente aceptadas sobre el tremendo impacto de las tecnologías cuánticas, muy pocos investigadores han podido demostrar, utilizando la tecnología disponible en la actualidad, que los métodos cuánticos tienen una ventaja sobre sus contrapartes clásicas.

En un artículo publicado el 1 de junio en la revista Examen físico X, investigadores de la Universidad de Arizona demuestran experimentalmente que el cuanto tiene una ventaja sobre los sistemas informáticos tradicionales.

“Demostrar una ventaja cuántica es un objetivo buscado desde hace mucho tiempo en la comunidad, y muy pocos experimentos han podido demostrarlo”, dijo el coautor del artículo Zheshen Zhang, profesor asistente de ciencia e ingeniería de materiales, investigador principal de Arizona. Quantum Information and Materials Group y uno de los autores del artículo. «Buscamos demostrar cómo podemos aprovechar la tecnología cuántica que ya existe para beneficiar aplicaciones del mundo real. «

¿Cómo (y cuándo) funciona Quantum?

La computación cuántica y otros procesos cuánticos se basan en pequeñas y poderosas unidades de información llamadas qubits. Las computadoras clásicas que usamos hoy en día funcionan con unidades de información llamadas bits, que existen como 0 o 1, pero los qubits pueden existir en ambos estados al mismo tiempo. Esta dualidad los hace a la vez poderosos y frágiles. Es probable que los qubits delicados colapsen sin previo aviso, lo que genera un proceso llamado corrección de errores—Que soluciona estos problemas a medida que surgen – muy importante.

El campo cuántico se encuentra ahora en una era que John Preskill, un físico de renombre del Instituto de Tecnología de California, llamó «cuántico ruidoso de escala media» o NISQ. En la era NISQ, las computadoras cuánticas pueden realizar tareas que solo requieren alrededor de 50 a unos pocos cientos de qubits, pero con una cantidad significativa de ruido o interferencia. No más que eso y el ruido triunfa sobre la utilidad, haciendo que todo se derrumbe. Está ampliamente aceptado que se necesitarían entre 10.000 y varios millones de qubits para que las aplicaciones cuánticas sean útiles en la práctica.

Imagínese inventar un sistema que garantice que cada comida que cocine saldrá a la perfección y luego dar ese sistema a un grupo de niños que no tienen los ingredientes adecuados. Será genial en unos años, una vez que los niños crezcan y puedan comprar lo que necesitan. Pero hasta entonces, la utilidad del sistema es limitada. Asimismo, hasta que los investigadores avancen en el campo de la corrección de errores, que puede reducir los niveles de ruido, los cálculos cuánticos se limitan a una pequeña escala.

Los ingenieros de Arizona demuestran una ventaja cuántica

Quntao Zhuang (izquierda), PI del Grupo de Teoría de la Información Cuántica, y Zheshen Zhang, PI del Grupo de Materiales e Información Cuántica, son profesores asistentes en la Facultad de Ingeniería. Crédito: Universidad de Arizona

Beneficios del enredo

El experimento descrito en el artículo utilizó una mezcla de técnicas clásicas y cuánticas. Específicamente, utilizó tres sensores para clasificar la amplitud y el ángulo promedio de las señales de radiofrecuencia.

Los sensores han sido equipados con otro recurso cuántico llamado entrelazamiento, que les permite compartir información entre ellos y ofrece dos ventajas principales: en primer lugar, mejora la sensibilidad de los sensores y reduce los errores. En segundo lugar, debido a que están enredados, los sensores evalúan las propiedades generales en lugar de recopilar datos sobre partes específicas de un sistema. Esto es útil para aplicaciones que solo necesitan una respuesta binaria; por ejemplo, en imágenes médicas, los investigadores no necesitan conocer todas las células de una muestra de tejido que no es canceroso, solo si hay una célula que es cancerosa. El mismo concepto se aplica a la detección de productos químicos peligrosos en el agua potable.

La experiencia ha demostrado que equipar los sensores con entrelazamiento cuántico les da una ventaja sobre los sensores convencionales, reduciendo la probabilidad de errores por un margen pequeño pero crítico.

«Esta idea de usar enredos para mejorar los sensores no se limita a un tipo específico de sensor, por lo que podría usarse para una variedad de aplicaciones diferentes, siempre que tenga el equipo para codificar los sensores», dijo el estudio co -autor Quntao. Zhuang, profesor asistente de ingeniería eléctrica e informática e investigador principal del Grupo de teoría de la información cuántica «En teoría, podría considerar aplicaciones como lidar (detección de luz y rango) para automóviles autónomos, por ejemplo».

Zhuang y Zhang desarrollaron la teoría detrás del experimento y la describieron en un artículo de Physical Review X de 2019. Fueron coautores del nuevo artículo con el autor principal Yi Xia, un estudiante de doctorado en el James C. Wyant College of Optical Sciences., Y Wei Li, investigador postdoctoral en ciencia e ingeniería de materiales.

Clasificadores Qubit

Existen aplicaciones que utilizan una mezcla de procesamiento cuántico y clásico en la era NISQ, pero se basan en conjuntos de datos clásicos preexistentes que deben convertirse y clasificarse en el dominio cuántico. Imagine tomar una serie de fotos de perros y gatos y luego cargar las fotos en un sistema que usa métodos cuánticos para etiquetar las fotos como «gato» o «perro».

El equipo aborda el proceso de etiquetado desde una perspectiva diferente, utilizando sensores cuánticos para recopilar sus propios datos en primer lugar. Es más como usar una cámara cuántica especializada que etiqueta las fotos como «perro» o «gato» a medida que se toman.

“Muchos algoritmos toman en cuenta los datos almacenados en un disco de computadora y luego los convierten en un sistema cuántico, lo que requiere tiempo y esfuerzo”, dijo Zhuang. «Nuestro sistema trabaja en un problema diferente mediante la evaluación de los procesos físicos que tienen lugar en tiempo real».

El equipo está entusiasmado con las futuras aplicaciones de su trabajo en la intersección de detección cuántica y computación cuántica. Incluso planean algún día integrar toda su configuración experimental en un chip que podría sumergirse en un biomaterial o una muestra de agua para identificar enfermedades o sustancias químicas nocivas.

«Creemos que este es un nuevo paradigma para la computación cuántica, el aprendizaje de máquinas cuánticas y la computación cuántica. sensoresporque realmente crea un puente para interconectar todas estas áreas diferentes ”, dijo Zhang.


Un nuevo impulso en las tecnologías cuánticas


Más información:
Yi Xia et al, Clasificación de datos mejorada cuánticamente con una red de sensores enredados variables, Examen físico X (2021). DOI: 10.1103 / PhysRevX.11.021047

Proporcionado por
Universidad de Arizona

Cita: Los investigadores demuestran una ventaja cuántica (2021, 1 de junio) recuperado el 2 de junio de 2021 de https://phys.org/news/2021-06-quantum-advantage.html

Este documento está sujeto a derechos de autor. Aparte del uso legítimo para fines de estudio o investigación privados, no se puede reproducir ninguna parte sin permiso por escrito. El contenido se proporciona solo a título informativo.

READ  HORÓSCOPO: Escorpio, necesitas un poco más de orden y disciplina.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

El núcleo de Plutón probablemente fue creado por una antigua colisión

Published

on

El núcleo de Plutón probablemente fue creado por una antigua colisión

Suscríbase al boletín científico Wonder Theory de CNN. Explora el universo con información sobre descubrimientos fascinantes, avances científicos y mucho más..



cnn

Una enorme forma de corazón en la superficie de Plutón ha intrigado a los astrónomos desde que la nave espacial New Horizons de la NASA la capturó en una imagen de 2015. Los investigadores ahora creen que han resuelto el misterio de cómo surgió este corazón distintivo, y podría revelar nuevas pistas sobre los orígenes del planeta enano. .

Esta característica se llama Tombaugh Regio en honor al astrónomo Clyde Tombaugh, quien descubrió Plutón en 1930. Pero el núcleo no es solo un elemento, dicen los científicos. Y durante décadas, los detalles sobre la elevación de Tombaugh Regio, su composición geológica y forma distintiva, y su superficie altamente reflectante que es de un blanco más brillante que el resto de Plutón, han desafiado toda explicación.

Una cuenca profunda llamada Sputnik Planitia, que constituye el «lóbulo izquierdo» del núcleo, alberga gran parte del hielo de nitrógeno de Plutón.

La cuenca cubre un área de 745 millas por 1242 millas (1200 kilómetros por 2000 kilómetros), que es aproximadamente una cuarta parte del área de los Estados Unidos, pero también es de 1,9 a 2,5 millas (3 a 4 kilómetros) más baja. en elevación que la mayoría de los Estados Unidos. la superficie del planeta. Mientras tanto, el lado derecho del corazón también tiene una capa de hielo de nitrógeno, pero es mucho más delgada.

Gracias a una nueva investigación sobre Sputnik Planitia, un equipo internacional de científicos ha determinado que un evento cataclísmico creó el núcleo. Después de un análisis que incluyó simulaciones numéricas, los investigadores concluyeron que un cuerpo planetario de unos 700 kilómetros de diámetro, aproximadamente el doble del tamaño de Suiza de este a oeste, probablemente había chocado con Plutón en las primeras etapas de la historia del planeta enano.

READ  Saratoga Senior Center presenta un nuevo espacio en 290 West Ave. en Saratoga Springs – Saratogian

Los hallazgos son parte de un estudio sobre Plutón y su estructura interna publicado el lunes en la revista astronomía natural.

Anteriormente, el equipo había estudiado características inusuales en todo el sistema solar, como aquellas en la cara oculta de la Luna, probablemente creadas por colisiones durante los caóticos primeros días de la formación del sistema.

Los investigadores crearon simulaciones numéricas utilizando un software de hidrodinámica de partículas suavizadas, considerado la base para una amplia gama de estudios de colisiones planetarias, para modelar diferentes escenarios de posibles impactos, velocidades, ángulos y composiciones de la colisión teorizada del cuerpo planetario con Plutón.

Los resultados mostraron que el cuerpo planetario probablemente chocó contra Plutón en un ángulo inclinado en lugar de de frente.

«El núcleo de Plutón es tan frío que el (cuerpo rocoso que chocó con el planeta enano) permaneció muy duro y no se derritió a pesar del calor del impacto, y gracias al ángulo de impacto y la baja velocidad, el núcleo derretido del impactador no se hunde en el núcleo de Plutón, pero permanece intacto como una salpicadura en él”, dijo el autor principal del estudio, el Dr. Harry Ballantyne, investigador asociado de la Universidad de Berna en Suiza, en un comunicado de prensa.

Pero, ¿qué pasó con el cuerpo planetario después de que chocó con Plutón?

«En algún lugar debajo del Sputnik se encuentra el núcleo restante de otro cuerpo masivo, que Plutón nunca digirió por completo», dijo en un comunicado de prensa el coautor del estudio Erik Asphaug, profesor del Laboratorio Planetario y Lunar de la Universidad de Arizona.

La forma de lágrima del Sputnik Planitia es el resultado de la frigidez del núcleo de Plutón, así como de la velocidad relativamente baja del impacto en sí, descubrió el equipo. Otros tipos de impactos que fueron más rápidos y directos habrían creado una forma más simétrica.

READ  Vínculo descubierto entre la fotosíntesis y el "quinto estado de la materia"

“Estamos acostumbrados a pensar en las colisiones planetarias como eventos increíblemente intensos cuyos detalles pueden ignorarse, excepto aspectos como la energía, el impulso y la densidad. Pero en el sistema solar distante, las velocidades son mucho más lentas y el hielo sólido es sólido, por lo que hay que ser mucho más preciso en los cálculos”, dijo Asphaug. «Ahí es donde comienza la diversión».

Mientras estudiaba la función cardíaca, el equipo también se centró en la estructura interna de Plutón. Un impacto temprano en la historia de Plutón habría creado un déficit de masa, provocando que Sputnik Planitia migrara lentamente hacia el polo norte del planeta enano con el tiempo, mientras el planeta aún se estaba formando. Esto se debe a que, según las leyes de la física, la cuenca es menos masiva que su entorno, explican los investigadores en el estudio.

Sin embargo, el Sputnik Planitia se encuentra cerca del ecuador del planeta enano.

Investigaciones anteriores han sugerido que Plutón podría tener un océano subsuperficial y, de ser así, la corteza helada sobre el océano subsuperficial sería más delgada en la región de Sputnik Planitia, creando una densa protuberancia de agua líquida y provocando una migración masiva hacia el ecuador”, señala el estudio. dijeron los autores.

Pero el nuevo estudio ofrece una explicación diferente para la ubicación de esta característica.

“En nuestras simulaciones, todo el manto primordial de Plutón queda ahuecado por el impacto, y cuando el material del núcleo del impactador salpica el núcleo de Plutón, crea un exceso de masa local que puede explicar la migración hacia el ecuador sin un océano subterráneo, o como mucho sin un océano subsuperficial muy delgado”, dijo el coautor del estudio, el Dr. Martin Jutzi, científico senior en investigación espacial y ciencias planetarias del Instituto de Física de la Universidad de Berna.

READ  Una vista magnífica de una colección inusual de cinco galaxias.

Kelsi Singer, científica principal del Southwest Research Institute en Boulder, Colorado, y co-investigadora principal adjunta de la misión New Horizons de la NASA, que no participó en el estudio, dijo que los autores hicieron un trabajo extenso en la exploración de modelos y el desarrollo de sus hipótesis. . , aunque le hubiera gustado ver “una conexión más estrecha con la evidencia geológica”.

«Por ejemplo, los autores sugieren que la parte sur de Sputnik Planitia es muy profunda, pero gran parte de la evidencia geológica se ha interpretado en el sentido de que el sur es menos profundo que el norte», dijo Singer.

Los investigadores creen que la nueva teoría sobre el núcleo de Plutón podría arrojar más luz sobre la formación del misterioso planeta enano. Los orígenes de Plutón siguen siendo oscuros ya que existe en el borde del sistema solar y sólo ha sido estudiado de cerca por la misión New Horizons.

«Plutón es un vasto país de las maravillas con una geología única y fascinante, por lo que siempre son útiles hipótesis más creativas para explicar esta geología», dijo Singer. “Lo que ayudaría a distinguir entre las diferentes hipótesis es más información sobre el subsuelo de Plutón. Sólo podemos lograrlo enviando una nave espacial a la órbita de Plutón, potencialmente con un radar capaz de mirar a través del hielo.

Continue Reading

Horoscopo

Vea cómo el 'cometa diablo' se acerca al Sol en una explosiva eyección de masa coronal (vídeo)

Published

on

Vea cómo el 'cometa diablo' se acerca al Sol en una explosiva eyección de masa coronal (vídeo)

El observatorio solar espacial STEREO-A de la NASA está monitoreando de cerca el «cometa del diablo» 12P/Pons-Brooks mientras se prepara para realizar su máxima aproximación al sol, conocida como perihelio, el 21 de abril.

En esta secuencia, el cometa pasa cerca de Júpiter desde la perspectiva del observatorio, justo cuando se lanza al espacio una eyección de masa coronal (CME), una gran expulsión de plasma y campo magnético del Sol.

Las CME se forman de la misma manera que las erupciones solares: son el resultado de la torsión y realineación del campo magnético del sol, conocido como reconexión magnética. Cuando estas líneas de campo magnético se “enredan”, producen fuertes campos magnéticos localizados que pueden atravesar la superficie del Sol y liberar CME.

Relacionado: El 'Cometa Diablo' 12P/Pons-Brooks se dirige hacia el sol. ¿Sobrevivirá?

Una animación que muestra el cometa 12P/Pons-Brooks brillando intensamente cerca de Júpiter cuando una gran CME es liberada del Sol el 12 de abril de 2024. (Crédito de la imagen: NASA STEREO/Edición de Steve Spaleta)
Continue Reading

Horoscopo

Hallazgos notables: una nueva investigación revela que la médula espinal puede aprender y recordar

Published

on

Hallazgos notables: una nueva investigación revela que la médula espinal puede aprender y recordar

Una nueva investigación demuestra que la médula espinal puede aprender y recordar movimientos de forma independiente, desafiando las opiniones tradicionales sobre su función y mejorando potencialmente las estrategias de rehabilitación para pacientes con lesiones de la médula espinal.

Una nueva investigación revela que las neuronas de la médula espinal poseen la capacidad de aprender y retener información independientemente del cerebro.

La médula espinal se describe a menudo como un canal simple para transmitir señales entre el cerebro y el cuerpo. Sin embargo, la médula espinal puede aprender y memorizar movimientos por sí sola.

Un equipo de investigadores de Neuro-Electronics Research Flanders (NERF), con sede en Lovaina, detalla cómo dos poblaciones neuronales diferentes permiten que la médula espinal se adapte y recuerde conductas aprendidas de una manera completamente independiente del cerebro. Estos notables descubrimientos, publicados en la revista Ciencia, arrojan nueva luz sobre cómo los circuitos espinales podrían contribuir al control y la automatización del movimiento. Este conocimiento podría resultar relevante para la rehabilitación de personas con lesiones de columna.

La asombrosa plasticidad de la médula espinal

La médula espinal modula y refina nuestras acciones y movimientos integrando diferentes fuentes de información sensorial, sin intervención del cerebro. Además, las células nerviosas de la médula espinal pueden aprender a ajustar diversas tareas de forma autónoma, con suficiente práctica repetitiva. Sin embargo, la forma en que la médula espinal logra esta notable plasticidad ha intrigado a los neurocientíficos durante décadas.

Uno de estos neurocientíficos es la profesora Aya Takeoka. Su equipo en Neuro-Electronics Research Flanders (NERF, un instituto de investigación apoyado por IMEC, KU Leuven y VIB) estudia cómo la médula espinal se recupera de las lesiones explorando cómo se conectan las conexiones nerviosas, cómo funcionan y cambian cuando aprendemos. nuevos movimientos.

READ  Una vista magnífica de una colección inusual de cinco galaxias.

«Aunque tenemos evidencia de 'aprendizaje' dentro de la médula espinal a partir de experimentos que se remontan a principios del siglo XX, la pregunta de qué neuronas están involucradas y cómo codifican esta experiencia de aprendizaje sigue sin respuesta», explica el profesor Takeoka. .

Parte del problema es la dificultad de medir directamente la actividad de neuronas individuales en la médula espinal en animales que no están sedados pero que están despiertos y en movimiento. El equipo de Takeoka aprovechó un modelo en el que los animales entrenan movimientos específicos en cuestión de minutos. Al hacerlo, el equipo descubrió un mecanismo específico del tipo de célula para el aprendizaje de la médula espinal.

Dos tipos de células neuronales específicas

Para comprobar cómo aprende la médula espinal, el estudiante de doctorado Simon Lavaud y sus colegas del laboratorio Takeoka construyeron un dispositivo experimental para medir los cambios de movimiento en ratones, inspirado en métodos utilizados en estudios con insectos. «Evaluamos la contribución de seis poblaciones neuronales diferentes e identificamos dos grupos de neuronas, una dorsal y otra ventral, que median el aprendizaje motor».

«Estos dos conjuntos de neuronas se turnan», explica Lavaud. «Las neuronas dorsales ayudan a la médula espinal a aprender un nuevo movimiento, mientras que las neuronas ventrales la ayudan a recordar y realizar el movimiento más tarde».

“Podemos compararlo con una carrera de relevos dentro de la médula espinal. Las neuronas dorsales actúan como las primeras corredoras, transmitiendo información sensorial esencial para el aprendizaje. Luego, las células ventrales toman el control, asegurando que el movimiento aprendido se recuerde y se ejecute sin problemas.

READ  Saratoga Senior Center presenta un nuevo espacio en 290 West Ave. en Saratoga Springs – Saratogian

Aprendizaje y memoria fuera del cerebro

Los resultados detallados, publicados en Ciencia, ilustran que la actividad neuronal en la médula espinal se asemeja a varios tipos clásicos de aprendizaje y memoria. Será crucial comprender mejor estos mecanismos de aprendizaje, ya que probablemente contribuyan a diferentes formas de aprender y automatizar el movimiento, y también podrían ser relevantes en el contexto de la rehabilitación, explica la profesora Aya Takeoka: «Los circuitos que hemos descrito podrían proporcionar la significa que la médula espinal contribuya al aprendizaje del movimiento y a la memoria motora a largo plazo, los cuales nos ayudan a movernos, no solo con buena salud, sino especialmente durante la recuperación de una lesión en el cerebro o la médula espinal.

Referencia: “Dos clases neuronales inhibidoras gobiernan la adquisición y recuperación de la adaptación sensoriomotora espinal” por Simon Lavaud, Charlotte Bichara, Mattia D'Andola, Shu-Hao Yeh y Aya Takeoka, 11 de abril de 2024, Ciencia.
DOI: 10.1126/ciencia.adf6801

La investigación (equipo) fue apoyada por la Fundación de Investigación de Flandes (FWO), Marie Skłodowska-Curie Actions (MSCA), una beca de doctorado Taiwan-KU Leuven (P1040) y la Fundación de Investigación de la Médula Espinal Wings for Life.

Continue Reading

Trending