Connect with us

Horoscopo

La inteligencia artificial ayuda a mejorar los ojos de la NASA en el sol

Published

on

La inteligencia artificial ayuda a mejorar los ojos de la NASA en el sol

La fila superior de imágenes muestra la degradación del canal de longitud de onda 304 Angstrom de AIA a lo largo de los años desde el lanzamiento de SDO. La fila inferior de imágenes se corrige para esta degradación mediante un algoritmo de aprendizaje automático. Crédito: Luiz Dos Santos / NASA GSFC

Un grupo de investigadores está utilizando técnicas de inteligencia artificial para calibrar algunas de las imágenes del Sol de la NASA, lo que ayuda a mejorar los datos que utilizan los científicos para la investigación solar. La nueva técnica fue publicada en la revista Astronomía y Astrofísica 13 de abril de 2021.

Un telescopio solar tiene un trabajo duro. Ver el sol pasa factura, con el bombardeo constante de una corriente interminable de partículas solares y una luz solar intensa. Con el tiempo, las lentes sensibles y los sensores de los telescopios solares comienzan a degradarse. Para garantizar que los datos devueltos por estos instrumentos sean siempre precisos, los científicos recalibran periódicamente para asegurarse de que comprenden exactamente cómo está cambiando el instrumento.

Lanzado en 2010, el Observatorio de Dinámica Solar de la NASA, o SDO, ha estado proporcionando imágenes del Sol en alta definición durante más de una década. Sus imágenes han brindado a los científicos información detallada sobre varios fenómenos solares que pueden desencadenar el clima espacial y afectar a nuestros astronautas y tecnología en la Tierra y en el espacio. El Atmospheric Imaging Assembly, o AIA, es uno de los dos instrumentos de imágenes en SDO y está constantemente mirando al Sol, tomando imágenes en 10 longitudes de onda de luz ultravioleta cada 12 segundos. Esto crea una gran cantidad de información sobre el Sol como ninguna otra, pero, como todos los instrumentos para observar el Sol, el AIA se degrada con el tiempo y los datos deben calibrarse con frecuencia.

Kit de imágenes atmosféricas de siete longitudes de onda

Esta imagen muestra siete de las longitudes de onda ultravioleta observadas por la Asamblea de Imágenes Atmosféricas a bordo del Observatorio de Dinámica Solar de la NASA. La fila superior representa las observaciones tomadas desde mayo de 2010 y la fila inferior muestra las observaciones de 2019, sin ninguna corrección, mostrando cómo el instrumento se ha degradado con el tiempo. Crédito: Luiz Dos Santos / NASA GSFC

Desde el lanzamiento de SDO, los científicos han utilizado cohetes de sondeo para calibrar el AIA. Los cohetes de sondeo son cohetes más pequeños que generalmente transportan solo unos pocos instrumentos y realizan vuelos cortos al espacio, generalmente solo 15 minutos. Es importante destacar que los cohetes sonoros vuelan sobre la mayor parte de la atmósfera de la Tierra, lo que permite que los instrumentos a bordo vean las longitudes de onda ultravioleta medidas por AIA. Estas longitudes de onda de luz son absorbidas por la atmósfera terrestre y no pueden medirse desde el suelo. Para calibrar el AIA, adjuntan un telescopio ultravioleta a un cohete sonda y comparan estos datos con las mediciones del AIA. Luego, los científicos pueden hacer ajustes para tener en cuenta cualquier cambio en los datos de AIA.

READ  Descubrimiento de un nuevo planeta del tamaño de la Tierra orbitando una estrella que vivirá 100 mil millones de años

El método de calibración del cohete sonoro tiene ciertos inconvenientes. Los cohetes sonoros solo se pueden lanzar con tanta frecuencia, pero AIA está constantemente mirando al sol. Esto significa que hay un tiempo de inactividad en el que la calibración se desvía ligeramente entre cada calibración de cohete sonora.

«Esto también es importante para las misiones del espacio profundo, que no tendrán la capacidad de calibrar un cohete que suene», dijo el Dr. Luiz Dos Santos, físico solar del Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, y autor principal del artículo. “Estamos abordando dos problemas al mismo tiempo.

Calibración virtual

Con estos desafíos en mente, los científicos decidieron explorar otras opciones para calibrar el instrumento, con miras a una calibración constante. El aprendizaje automático, una técnica utilizada en inteligencia artificial, parecía encajar perfectamente.

Como sugiere el nombre, el aprendizaje automático requiere un programa de computadora, o algoritmo, para aprender a realizar su tarea.

Sun AIA 2021

Sol visto por AIA en luz 304 Angstrom en 2021 antes de la corrección de degradación (ver imagen a continuación con correcciones de una calibración de sonda de cohete). Crédito: NASA GSFC

Primero, los investigadores tuvieron que entrenar un algoritmo de aprendizaje automático para reconocer estructuras solares y cómo compararlas usando datos AIA. Lo hacen dando al algoritmo imágenes de vuelos de calibración de cohetes sonoros y diciéndole la cantidad correcta de calibración que necesitan. Después de suficientes de estos ejemplos, le dan al algoritmo imágenes similares y ven si identificaría la calibración correcta necesaria. Con suficientes datos, el algoritmo aprende a identificar la cantidad de calibración necesaria para cada imagen.

Sun AIA 2021 corregido

Sol visto por AIA en una luz de 304 Angstrom en 2021 con correcciones de la calibración de un cohete sonoro (ver imagen anterior antes de la corrección de degradación). Crédito: NASA GSFC

Debido a que AIA mira al Sol en múltiples longitudes de onda de luz, los investigadores también pueden usar el algoritmo para comparar estructuras específicas en longitudes de onda y fortalecer sus evaluaciones.

READ  Haz espacio para el arte en Big Sky

Para empezar, le enseñarían al algoritmo cómo se veía una llamarada solar mostrándole llamaradas solares en todas las longitudes de onda AIA hasta que reconociera las llamaradas solares en todos los tipos de luz. Una vez que el programa puede reconocer una llamarada solar sin ninguna degradación, el algoritmo puede determinar el grado de degradación que afecta a las imágenes AIA actuales y la cantidad de calibración necesaria para cada una.

«Fue la gran cosa», dijo Dos Santos. «En lugar de simplemente identificarlo en la misma longitud de onda, estamos identificando estructuras en todas las longitudes de onda».

Esto significa que los investigadores pueden tener más confianza en la calibración identificada por el algoritmo. De hecho, al comparar sus datos de calibración virtual con los datos de calibración de cohetes sonoros, el programa de aprendizaje automático fue perfecto.

Con este nuevo proceso, los investigadores están listos para calibrar continuamente imágenes AIA entre vuelos de cohetes de calibración, mejorando así la precisión de los datos SDO para los investigadores.

Aprendizaje automático más allá del sol

Los investigadores también utilizaron el aprendizaje automático para comprender mejor las condiciones más cercanas a casa.

Un grupo de investigadores dirigido por el Dr. Ryan McGranaghan, científico de datos sénior e ingeniero aeroespacial de ASTRA LLC y del Centro de vuelos espaciales Goddard de la NASA – aprendizaje automático de segunda mano para comprender mejor el vínculo entre el campo magnético de la Tierra y la ionosfera, la parte cargada eléctricamente de la atmósfera superior de la Tierra. Usando técnicas de ciencia de datos para grandes volúmenes de datos, podrían aplicar técnicas de aprendizaje automático para desarrollar un modelo más reciente que les ayudó a comprender mejor cómo las partículas energizadas del espacio llueven en el aire. La atmósfera de la Tierra, donde determinan el clima espacial.

READ  La misión ClearSpace-1 cambia de objetivo en respuesta a una colisión de desechos espaciales

A medida que avance el aprendizaje automático, sus aplicaciones científicas se expandirán a más y más misiones. Mirando hacia el futuro, esto puede significar que las misiones en el espacio profundo, que van a lugares donde los vuelos de cohetes de calibración no son posibles, aún se pueden calibrar y continuar proporcionando datos precisos, incluso alejándose cada vez más de la Tierra o de cualquier estrella.

Referencia: «Autocalibración multicanal para ensamblaje de imágenes atmosféricas mediante aprendizaje automático» por Luiz FG Dos Santos, Souvik Bose, Valentina Salvatelli, Brad Neuberg, Mark CM Cheung, Miho Janvier, Meng Jin, Yarin Gal, Paul Boerner y Atılım Güneş Baydin, 13 de abril , 2021, Astronomía y Astrofísica.
DOI: 10.1051 / 0004-6361 / 202040051

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Los ingredientes clave para la vida en la Tierra provienen del espacio, sugiere nueva evidencia

Published

on

Los ingredientes clave para la vida en la Tierra provienen del espacio, sugiere nueva evidencia

Ha surgido nueva evidencia que sugiere que los componentes básicos de la vida fueron traídos a la Tierra primordial desde el espacio mediante meteoritos, un descubrimiento que podría ayudar a los científicos a buscar vida extraterrestre.

Se cree que estos meteoritos fueron restos fracturados de los primeros «asteroides no fundidos», un tipo de planetesimal. Los planetesimales son pequeños cuerpos rocosos que sirvieron como componentes básicos de los planetas rocosos del Sistema Solar, incluida la Tierra. Se formaron hace unos 4.600 millones de años en el disco de polvo y gas que rodeaba al sol naciente, cuando las partículas alrededor de nuestra joven estrella comenzaron a pegarse, acumulando más masa y formando cuerpos cada vez más grandes.

Continue Reading

Horoscopo

El telescopio Hubble captura la gran mancha roja de Júpiter contrayéndose como una bola de estrés

Published

on

El telescopio Hubble captura la gran mancha roja de Júpiter contrayéndose como una bola de estrés

Suscríbase al boletín científico Wonder Theory de CNN. Explora el universo con información sobre descubrimientos fascinantes, avances científicos y mucho más..



cnn

Nuevas observaciones de la Gran Mancha Roja de Júpiter capturadas por el Telescopio Espacial Hubble muestran que la tormenta de 190 años se mueve como gelatina y cambia de forma como una bola de estrés apretada.

Las inesperadas observaciones, realizadas por el Hubble durante 90 días, de diciembre a marzo, muestran que la Gran Mancha Roja no es tan estable como parece, según los astrónomos.

La Gran Mancha Roja, o GRS, es un anticiclón, o gran circulación de vientos en la atmósfera de Júpiter que gira alrededor de un área central de alta presión a lo largo del cinturón de nubes de latitud media sur del planeta. Y la tormenta de larga duración es tan grande (la más grande del sistema solar) que la Tierra podría entrar en ella.

Aunque las tormentas generalmente se consideran inestables, la Gran Mancha Roja ha persistido durante casi dos siglos. Pero los cambios observados en la tormenta parecen estar relacionados con su movimiento y tamaño.

Un lapso de tiempo de las imágenes muestra el vórtice «temblando» como gelatina y expandiéndose y contrayéndose con el tiempo.

Los investigadores describieron la observación en un análisis publicado en La revista de ciencia planetaria y presentado el miércoles en la 56ª Reunión Anual de la División de Ciencias Planetarias de la Sociedad Astronómica Estadounidense en Boise, Idaho.

“Aunque sabíamos que su movimiento varía ligeramente en longitud, no esperábamos ver oscilar también su tamaño. Hasta donde sabemos, esto no se ha identificado antes”, dijo en un comunicado la autora principal del estudio, Amy Simon, científica planetaria del Centro de Vuelos Espaciales Goddard de la NASA en Greenbelt, Maryland.

«Esta es realmente la primera vez que tenemos la cadencia de imágenes adecuada del GRS», dijo Simon. “Con la alta resolución del Hubble, podemos decir que el GRS definitivamente entra y sale al mismo tiempo que se mueve cada vez más lento. Fue muy inesperado.

READ  El Telescopio Espacial Webb revela una nueva característica en la atmósfera de Júpiter: "Estábamos totalmente sorprendidos"

Los astrónomos han estado observando la icónica característica carmesí durante al menos 150 años y, a veces, las observaciones resultan en sorpresas, incluida la última revelación de que la forma ovalada de la tormenta puede cambiar de tamaño y, a veces, parecer más delgada o más gorda.

Recientemente, un equipo independiente de astrónomos examinó el corazón de la Gran Mancha Roja utilizando el Telescopio Espacial James Webb para capturar nuevos detalles en luz infrarroja. Las observaciones del Hubble se realizaron en luz visible y ultravioleta.

El estudio, publicado el 27 de septiembre en la Revista de investigación geofísica: planetasreveló que la Gran Mancha Roja está fría en el centro, lo que hace que el amoníaco y el agua dentro del vórtice se condensen y creen nubes espesas. El equipo de investigación también detectó gas fosfina en la tormenta, que podría desempeñar «un papel en la generación de estos misteriosos» colores rojos que hacen que la Gran Mancha Roja sea tan emblemática, dijo Leigh Fletcher, coautora del estudio y profesora de ciencias planetarias. en la Universidad de Londres en el Reino Unido. Leicester, en un comunicado de prensa.

Los científicos de la NASA utilizan el ojo agudo del Hubble para rastrear el comportamiento de la tormenta una vez al año como parte del programa Outer Planet Atmospheres Legacy, u OPAL, dirigido por Simon. Los científicos utilizan este programa para observar los planetas exteriores de nuestro sistema solar y observar cómo cambian con el tiempo.

Pero las nuevas observaciones se tomaron por separado como parte de un programa dedicado a estudiar la Gran Mancha Roja con más detalle, observando la evolución de la tormenta durante unos meses, en lugar de una sola instantánea anual.

READ  Gemas líquidas podrían estar lloviendo del cielo en este abrasador exoplaneta

«Para el ojo inexperto, las nubes rayadas de Júpiter y su famosa tormenta roja pueden parecer estáticas, estables y durar muchos años», dijo Fletcher. “Pero una inspección más cercana revela una variabilidad increíble, con patrones climáticos caóticos tan complejos como cualquier cosa que tengamos aquí en la Tierra. Los científicos planetarios han estado luchando durante años para detectar patrones en esta variación, cualquier cosa que pueda darnos una idea de la física detrás de este complejo sistema.

Fletcher no participó en el nuevo estudio.

La información obtenida de las observaciones del programa de las tormentas más grandes de nuestro sistema solar puede ayudar a los científicos a comprender cómo puede ser el clima en los exoplanetas que orbitan otras estrellas. Este conocimiento puede ampliar su comprensión de los procesos climáticos más allá de los que conocemos en la Tierra.

El equipo de Simon utilizó imágenes de alta resolución del Hubble para examinar en detalle los cambios de tamaño, forma y color de la Gran Mancha Roja.

«Cuando miramos más de cerca, vemos que muchas cosas cambian día a día», dijo Simon.

Los cambios incluyeron un brillo del núcleo de la tormenta a medida que la Gran Mancha Roja alcanza su mayor tamaño a medida que oscila.

«A medida que acelera y desacelera, el GRS empuja contra las ventosas corrientes en chorro al norte y al sur», dijo el coautor del estudio Mike Wong, científico planetario de la Universidad de California en Berkeley, en un comunicado de prensa. «Es como un sándwich en el que las rebanadas de pan se ven obligadas a expandirse cuando hay demasiado relleno en el medio».

READ  ¿Cuál es la cascada más grande del mundo?

En Neptuno, las manchas oscuras pueden desplazarse por el planeta ya que no hay fuertes corrientes en chorro que las mantengan en su lugar, dijo Wong, mientras que la Gran Mancha Roja está atrapada entre corrientes en chorro en una latitud sur en Júpiter.

Los astrónomos han notado una reducción de la Gran Mancha Roja desde que comenzó el programa OPAL hace una década y predicen que continuará reduciéndose hasta que alcance una forma estable y menos alargada, lo que podría reducir el tamaño de la oscilación de la Gran Mancha Roja.

«En este momento, está demasiado lleno su banda de latitud relativa al campo de viento. Una vez que se estreche dentro de esa banda, los vientos realmente lo mantendrán en su lugar”, dijo Simon.

El seguimiento de los cambios en la tormenta puede ayudar a los científicos a comprender mejor los procesos que tienen lugar en la atmósfera de Júpiter.

El nuevo estudio del Hubble completa aún más las piezas del rompecabezas de la Gran Mancha Roja, dijo Fletcher. Si bien los científicos saben que la deriva de la tormenta hacia el oeste tiene una oscilación inexplicable durante 90 días, el patrón de aceleración y desaceleración no parece cambiar incluso cuando la tormenta amaina, dijo.

«Al observar el GRS durante unos meses, el Hubble demostró que el propio anticiclón cambia de forma junto con esta oscilación», dijo Fletcher. “El cambio de forma es importante porque puede afectar la forma en que el borde del vórtice interactúa con otras tormentas que pasan. Además de las magníficas imágenes del Hubble, este estudio muestra el poder de observar sistemas atmosféricos durante largos períodos de tiempo. Se necesita este tipo de seguimiento para detectar estas tendencias, y está claro que cuanto más se mira, más estructura se ve en esta época caótica.

Continue Reading

Horoscopo

Los científicos descubren un misterioso 'sexto sentido' escondido en los geckos: ScienceAlert

Published

on

Los científicos descubren un misterioso 'sexto sentido' escondido en los geckos: ScienceAlert

Los animales han desarrollado una variedad de sentidos extraordinarios, dignos de los superhéroes. Los científicos ahora han descubierto que los geckos tienen un «sexto sentido» oculto que les permite captar vibraciones profundas y débiles.

Como otros lagartos, los gecos tokay (gecko gecko) tienen una audición especializada para sonidos de frecuencias más altas: son el mas sensible entre 1.600 y 2.000 Hertz, pero puede oír por encima de 5.000 Hertz.

Sin embargo, es sólo cuestión de usar sus viejos oídos normales. Dos investigadores de la Universidad de Maryland en EE.UU. han descubierto que los geckos tokay también pueden utilizar una estructura diferente, normalmente no asociada a la audición, para detectar vibraciones a frecuencias mucho más bajas, entre 50 y 200 Hercios.

El sáculo es una parte del oído interno que desempeña un papel clave en el equilibrio y en el seguimiento de la posición de la cabeza y el cuerpo. Esta estructura se conserva en peces, anfibios, reptiles, aves y mamíferos, pero sólo los dos primeros la utilizaban para oír. Ahora parece que al menos algunos reptiles también pueden hacerlo.

“El oído, tal como lo conocemos, escucha sonidos en el aire” explica catherine carrbiólogo y coautor del nuevo estudio. “Pero este antiguo camino interno, generalmente relacionado con el equilibrio, ayuda a los geckos a detectar vibraciones que pasan a través de medios como el suelo o el agua.

Esta vía existe en anfibios y peces, y ahora hay evidencia de que también se conserva en lagartos. Nuestros hallazgos arrojan luz sobre cómo evolucionó el sistema auditivo desde lo que se ve en los peces hasta lo que se ve en los animales terrestres, incluidos los humanos. »

READ  La misión ClearSpace-1 cambia de objetivo en respuesta a una colisión de desechos espaciales

Carr y el primer autor, el biólogo Dawei Han, estudiado de cerca los cerebros de los geckos tokay y descubrieron que el sáculo está directamente conectado a un grupo de neuronas, llamadas vestibularis ovalis (VeO), en el rombencéfalo.

Estas neuronas VeO no reciben información de otras estructuras del oído interno. Luego, la información se transmite al mesencéfalo auditivo, donde el animal percibiría las vibraciones simultáneamente con el sonido.

Para confirmar el papel del sáculo en la audición, los investigadores utilizaron electrodos de tungsteno para controlar la respuesta de las unidades VeO a las vibraciones a través de una plataforma. Aumentaron lentamente las vibraciones de 10 a 1000 Hertz y descubrieron que las neuronas eran más sensibles a frecuencias entre 50 y 200 Hertz, alcanzando un máximo alrededor de 100 Hertz.

Finalmente, probaron si las unidades VeO simplemente “escuchaban” los sonidos profundos y retumbantes producidos por el dispositivo de vibración a través de los canales auditivos típicos. El equipo entregó estímulos sonoros a los oídos de los animales, en las mismas frecuencias pero a un volumen más alto y, efectivamente, no detectaron respuesta de las unidades VeO.

Ilustración de la configuración experimental y los resultados. (Han y Carr, Informes celulares2024)

Esto convierte al gecko tokay en el primer amniota (el clado que comprende todos los reptiles, aves y mamíferos) que se sabe que utiliza el sáculo para este propósito.

Dicho esto, todavía tienen que encontrar una razón conductual obvia por la cual estos lagartos tienen receptores de vibración específicos en sus cabezas. Los geckos Tokay son criaturas notoriamente ruidosas y sus fuertes llamadas están dentro del rango de frecuencia de su audición habitual. Pero Han y Carr plantean la hipótesis de que podrían utilizarlo para detectar los débiles ruidos del viento, la lluvia y los depredadores.

READ  Haz espacio para el arte en Big Sky

Y puede que no sea el único: un estudio rápido reveló estructuras que se parecen al VeO en algunas otras especies de lagartos y serpientes, lo que sugiere que este superpoder podría ser relativamente común entre los reptiles. Según el equipo, se necesitarán más estudios para confirmar esto.

Pero no hay amor por nosotros, los mamíferos. Nuestras conexiones sáculo/rombencéfalo son mucho más débiles y se cree que desempeñan un papel principalmente en la supresión de sonidos autogenerados y el seguimiento de la posición de nuestra cabeza. Pero a los reptiles, este sexto sentido les podría ayudar de varias maneras.

«Se pensaba que muchas serpientes y lagartos eran 'mudos' o 'sordos' en el sentido de que no emitían sonidos o no podían oírlos bien». Dijo Han..

«Pero resulta que potencialmente podrían comunicarse a través de señales vibratorias utilizando esta vía sensorial, lo que realmente cambia la forma en que los científicos piensan sobre la percepción animal en general».

La investigación fue publicada en la revista. Informes celulares.

Continue Reading

Trending