Connect with us

Horoscopo

El telescopio James Webb ahora es genial (gracias a su nuevo parasol)

Published

on

Agrandar / El 4 de enero de 2022, los ingenieros completaron con éxito el despliegue de la sombrilla del telescopio espacial James Webb, visto aquí durante su prueba final de despliegue en la Tierra en diciembre de 2020 en Northrop Grumman en Redondo Beach, California.

Nasa

La NASA aún no ha terminado de implementar el telescopio espacial James Webb, pero los científicos e ingenieros que trabajan en el instrumento de $ 10 mil millones se sienten mucho mejor hoy.

A última hora de la mañana del martes, la NASA y el contratista principal del telescopio, Northrop Grumman, estiraron con éxito las cinco capas de la sombrilla del telescopio. Este paso completó el proceso crítico de desplegar la masiva y esencial sombrilla del telescopio, que mantiene el telescopio frío para que pueda realizar observaciones delicadas de objetos débiles.

«El ambiente es difícil de describir», dijo Hilary Stock, ingeniera estructural en Northrop Grumman que trabajó en la «tensión» de la sombrilla el lunes y martes, en una teleconferencia con periodistas. «Fue un momento maravilloso. Mucha alegría. Mucho alivio».

Las cinco capas de la visera solar son increíblemente delicadas. Cada hoja similar al plástico tiene el mismo grosor que un cabello humano y tuvo que estirarse sobre un área del tamaño de una cancha de tenis. Todo esto tuvo que hacerse en microgravedad, un entorno que no se pudo simular durante las pruebas en tierra.

“Esta fue la primera vez que implementamos este sistema en zero-gy tuvimos éxito”, dijo Alphonso Stewart, Gerente de Sistemas de Implementación de Webb. «Es un muy buen testimonio del trabajo realizado por los equipos».

READ  Obtenga 2 TB de almacenamiento en la nube de Prism Drive de por vida por menos de $50

Tantas cosas podrían haber salido mal. En pruebas tan recientes como en 2018, las capas de la visera aferrado durante las pruebas en tierra. No es difícil ver por qué. Según la NASA, el despliegue y tensado de la sombrilla involucró 139 de los 178 mecanismos de disparo del telescopio, 70 conjuntos de bisagras, ocho motores de despliegue, unas 400 poleas y 90 cables individuales que totalizan más de 400 metros de longitud.

Al pasar por el proceso de despliegue de la sombrilla, por lo tanto, la NASA superó el aspecto más complejo de desembalar el telescopio en el espacio y prepararlo para las operaciones.

“El despliegue del parasol fue sin duda el más complejo en términos de las partes móviles que tenían que trabajar en armonía y los sistemas interdependientes”, dijo James Cooper, director del parasol del Telescopio Webb. «Los elementos que quedan desde el punto de vista del despliegue son más convencionales, como las bisagras y los motores».

La NASA planea completar los elementos estructurales restantes del telescopio para el lunes, luego desplegar las alas del espejo secundario y el espejo primario. Este proceso debería completarse en unas pocas semanas. En este punto, el telescopio Webb debería llegar a su destino, un punto estable de Lagrange, entrando en una gran órbita a unos 1,5 millones de kilómetros de la Tierra.

A continuación, se comenzará a trabajar para alinear los espejos del telescopio y calibrar los instrumentos científicos de Webb. Las primeras observaciones científicas deberían comenzar en junio. El universo está esperando.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

“Verdaderamente asombroso”: ¡puntos cuánticos sintetizados con éxito dentro de células vivas!

Published

on

“Verdaderamente asombroso”: ¡puntos cuánticos sintetizados con éxito dentro de células vivas!

Un estudio innovador realizado por científicos de la Universidad de Nankai revela un nuevo método para sintetizar puntos cuánticos en los núcleos de las células vivas. Esta técnica, que explota los procesos naturales de la célula utilizando glutatión, allana el camino para aplicaciones avanzadas en biología sintética, incluida la producción de nanomedicinas y nanorobots, al permitir la síntesis precisa de materiales inorgánicos a nivel subcelular.

Un estudio reciente publicado en la revista revista científica nacional demuestra la síntesis de puntos cuánticos (QD) en el núcleo de las células vivas. La investigación fue realizada por el Dr. Hu Yusi, el profesor asociado Wang Zhi-Gang y el profesor Pang Dai-Wen de la Universidad de Nankai.

Durante el estudio de la síntesis de QD en células de mamíferos, se descubrió que el tratamiento con glutatión (GSH) aumentaba la capacidad reductora de la célula. Los QD generados no se distribuyeron uniformemente dentro de la celda sino que se concentraron en un área específica. A través de una serie de experimentos, se confirmó que esta área es efectivamente el núcleo celular (como se muestra en la figura). El Dr. Hu dijo: “Es realmente asombroso, casi increíble. »

Comprender los mecanismos moleculares

El Dr. Hu y su mentor, el profesor Pang, intentaron dilucidar el mecanismo molecular de la síntesis de puntos cuánticos en el núcleo celular. Se ha descubierto que el GSH desempeña un papel importante. Hay una proteína transportadora de GSH, Bcl-2, en el núcleo, que transporta GSH al núcleo en grandes cantidades, mejorando así la capacidad reductora del núcleo y promoviendo la generación de precursores de Se. Al mismo tiempo, el GSH también puede exponer los grupos tiol de las proteínas, creando condiciones favorables para la generación de precursores de cadmio. La combinación de estos factores permite en última instancia la síntesis abundante de puntos cuánticos en el núcleo celular.

La biosíntesis de puntos cuánticos en el núcleo de las células vivas.

De izquierda a derecha, imágenes de fluorescencia de los QD, imágenes de fluorescencia del tinte que tiñe el núcleo y la fusión de las dos. Esta figura muestra que con el tratamiento con GSH, se cultivaron QD fluorescentes en el núcleo de células vivas. Se' significa Na2SEO3; Cd' significa CdCl2. Crédito: Science China Press

El profesor Pang dijo: “Éste es un resultado apasionante; Este trabajo logra la síntesis precisa de QD en células vivas a nivel subcelular. Continuó: “La investigación en el campo de la biología sintética se centra principalmente en la síntesis de moléculas orgánicas por células vivas mediante genética inversa. Rara vez vemos síntesis celulares vivas de materiales funcionales inorgánicos. Nuestro estudio no implica modificaciones genéticas complejas; logra la síntesis objetivo de nanomateriales fluorescentes inorgánicos en orgánulos celulares simplemente regulando el contenido y la distribución de GSH en la célula. Esto aborda el déficit de la biología sintética para la síntesis de materiales inorgánicos.

READ  La Luna Azul de agosto, la luna llena más grande de 2023, sale esta semana

Si la síntesis de materiales orgánicos en las células sigue siendo predominante en el campo de la biosíntesis, esta investigación abre sin duda el camino a la síntesis de materiales inorgánicos en la biología sintética. El profesor Pang dijo: “Cada uno de nuestros avances es un nuevo punto de partida. Estamos convencidos de que en un futuro próximo podremos utilizar la síntesis celular para producir nanomedicamentos, o incluso nanorobots en orgánulos específicos. Además, podemos transformar células en supercélulas, permitiéndoles hacer cosas inimaginables. »

Referencia: “Síntesis in situ de puntos cuánticos en el núcleo de células vivas” por Yusi Hu, Zhi-Gang Wang, Haohao Fu, Chuanzheng Zhou, Wensheng Cai, Xueguang Shao, Shu-Lin Liu y Dai-Wen Pang, 12 de enero de 2024, revista científica nacional.
DOI: 10.1093/nsr/nwae021

Continue Reading

Horoscopo

Cómo la innovación espacial está llegando a la Tierra: explicada por la astronauta de la NASA Jessica Meir

Published

on

Cómo la innovación espacial está llegando a la Tierra: explicada por la astronauta de la NASA Jessica Meir

A la vanguardia de la exploración espacial, la Estación Espacial Internacional (ISS) sirve como laboratorio en órbita alrededor de la Tierra y simboliza lo que la humanidad puede lograr cuando las naciones trabajan juntas. Una conversación reciente con la astronauta de la NASA Jessica Meir en el escenario del Tech Arena 2024 en febrero destaca las complejidades y los triunfos de la vida y el trabajo a bordo de la ISS.

El descubrimiento científico en el espacio presenta muchos desafíos. Meir dice que si bien muchos descubrimientos provienen de la investigación espacial, como cámaras de teléfonos y purificadores de aire, muchas tecnologías nuevas no están disponibles para su uso en el espacio.

“Cuando se habla de innovación, una de las cosas más difíciles de un experimento en el espacio no es el experimento en sí; es toda la logística del medio ambiente”, dijo Jessica Meir en el escenario del Tech Arena 2024.

Jessica Meir con la moderadora Linda Nyberg en el escenario de The Tech Arena 2024. Crédito de la imagen: Adrian Pehrson.

Colaboración en la ISS

La Estación Espacial Internacional es un proyecto de colaboración entre Estados Unidos, Canadá, Japón, Europa y Rusia, lo que los convierte a todos ellos en partes interesadas en el éxito de las misiones.

“En realidad, la ISS fue diseñada de una manera inteligente, lo que requiere colaboración. Así que dependemos unos de otros, lo cual es fantástico para un proyecto pacífico como este, porque realmente lo obliga a sobrevivir a pesar de lo que está sucediendo en el terreno”.

“El café de ayer se convierte en el café de hoy”

Desde una perspectiva de sostenibilidad, la ISS está un paso por delante de la vida en la Tierra gracias a su sistema sostenible de reciclaje de agua. Meir explicó que «del 85 al 90 por ciento del agua se reutiliza, incluso el sudor y la orina, toda la recoge el inodoro, y también recogemos toda la condensación de la humedad del ambiente».

READ  Sierra Space explota objetos para demostrar que los hábitats inflables son seguros

Este sistema, que transforma “el café de ayer en el café de hoy”, demuestra el enfoque innovador de la estación hacia la sostenibilidad. Por supuesto, en un espacio aislado es más fácil recolectar mayores volúmenes de aguas residuales, pero esto todavía tiene aplicaciones potenciales en la Tierra, especialmente en áreas que enfrentan escasez de agua.

Jessica Meir en Tech Arena 2024.

Vida en la Luna o Marte

Crear un estilo de vida circular en la ISS es un paso hacia la vida potencial en el espacio o en otros planetas. El astronauta de la NASA le dijo a la audiencia en The Tech Arena 2024 que una de las cosas más emocionantes de sus meses en el espacio fue cultivar y cosechar lechuga con éxito. “Fue realmente agradable tener vegetales frescos allí”, dijo Jessica Meir.

La ISS no es sólo un laboratorio en órbita; es un vistazo a un futuro donde los límites de la habitación humana se extienden más allá de nuestro planeta, tal vez algún día todos seamos astronautas.

Continue Reading

Horoscopo

Una fuente cósmica contamina el espacio intergaláctico con 50 millones de soles de materia

Published

on

Una fuente cósmica contamina el espacio intergaláctico con 50 millones de soles de materia

Tremendas explosiones en una galaxia cercana a la Vía Láctea vierten a su entorno material equivalente a unos 50 millones de soles. Los astrónomos han cartografiado este evento de contaminación galáctica en alta resolución, obteniendo importantes pistas sobre cómo el espacio entre galaxias se llena de elementos químicos que eventualmente se convertirán en los componentes básicos de nuevas estrellas.

Estos descubrimientos se realizaron cuando el equipo internacional estudió NGC 4383, una galaxia espiral en la constelación de Coma Berenices, utilizando un instrumento del Very Large Telescope (VLT) llamado Multi Unit Spectroscopic Explorer (MUSE).

Continue Reading

Trending