Connect with us

Horoscopo

El calor producido por la Tierra es (en última instancia) de origen radiactivo

Published

on

El Piton de la Fournaise en erupción (2015) – © Greg de Serra – Flickr CC BY-NC-SA

  • Ahora sabemos que el calor de la Tierra es principalmente radiactividad, según un estudio publicado por nuestro socio The Conversation.
  • El estudio de los geoneutrinos, partículas producidas por nuestro planeta, ofrece un método original de investigar las profundidades de la Tierra.
  • El análisis de este fenómeno fue realizado por François Vannucci, investigador en física de partículas, especialista en neutrinos (Universidad de París).

La Tierra se está calentando. Sabemos que la temperatura interior aumenta cuando nos hundimos en la corteza terrestre. A 25 km de profundidad, alcanza los 750 grados; en el centro, se estima en 4000 ℃. Las aguas termales se conocen desde la antigüedad y hoy en día se utiliza energía geotérmica para calentar apartamentos. Erupciones volcánicas, géiseres, terremotos son signos de energía interna.
Medimos un flujo de calor promedio emitido por la superficie de 87 milivatios por m2, o una diezmilésima parte de la potencia recibida del Sol, para una potencia total emitida por la Tierra de 47 metros cuadrados, o varios miles de plantas de energía nuclear. El origen ha sido durante mucho tiempo un misterio, ahora sabemos que la mayor parte es radiactividad.

¿Cómo nacen los átomos?

Para comprender el origen de este calor, debemos remontarnos a la génesis de los elementos atómicos.

El Big Bang produjo materia en forma de protones, neutrones, electrones y neutrinos. Hace unos 370.000 años, se formaron los primeros átomos, protones que atraen electrones para dar hidrógeno. Otros núcleos un poco más pesados, deuterio, helio, ocurrieron en paralelo, esto se llama nucleosíntesis primordial.

El camino fue mucho más laborioso para crear los elementos pesados. No fue hasta la formación de estrellas y los núcleos pesados ​​nacieron por acreción en el caldero estelar; esta aquí nucleosíntesis estelar que tomó miles de millones de años de gestación. Luego, estos elementos se esparcen en el espacio en el momento de la muerte de las estrellas para encontrarse capturados al nivel de los planetas.

La composición de la Tierra es por tanto muy complicada y allí encontramos, afortunadamente para nuestra existencia, todos los elementos naturales desde el hidrógeno, el átomo más simple, hasta los átomos pesados ​​como el uranio hasta el carbono, hierro … y todo el Mesa de mendeleyev. Las entrañas de la Tierra contienen la panoplia de elementos atómicos reunidos en diferentes capas que se distribuyen según una estructura de cebolla.

Nuestro planeta contiene todos los elementos representados en la tabla periódica de elementos © Scaler & Michka – Wikipedia CC BY-SA

Sabemos poco sobre el interior de nuestro planeta, las minas más profundas alcanzan como máximo 10 km mientras que su radio es de 6.500 km. Se obtienen más conocimientos experimentales internos mediante mediciones sísmicas. A partir de estos datos, los geólogos han dividido la estructura de la tierra en diferentes estratos: en el centro el núcleo, presentando una parte interna sólida y una externa líquida, luego vienen las capas interna y externa y finalmente la corteza. Sin embargo, la Tierra, por su composición de elementos pesados ​​e inestables, es radiactiva, lo que sugiere un original método complementario para examinar su interior y comprender mejor de dónde proviene su calor.

¿Qué es la radiactividad?

Medicamentos y cosméticos que contienen una pequeña dosis de radio, a principios del siglo XX © Rama – Wikipedia CC BY-SA

La radiactividad es un fenómeno natural muy común e inevitable. Todo en la Tierra es radiactivo, es decir, produce partículas elementales de forma espontánea, y nosotros mismos emitimos algunos miles de partículas por segundo. La opinión pública no le tenía miedo en la época de Marie Curie. Al contrario, elogiamos sus bondades: compramos cremas de belleza certificadas radioactivas y glorificamos las propiedades de las aguas minerales, como evoca la literatura de la época. Maurice Leblanc escribe sobre una fuente termal que salva a Arsène Lupin durante una de sus aventuras:

“El agua contiene principios de energía y poder que realmente la convierten en una fuente de juventud, principios derivados de la asombrosa radiactividad. »(Maurice Leblanc, La joven de ojos verdes, 1927)

Se conocen varios tipos de radiactividad, cada uno de los cuales da lugar a una emisión espontánea de partículas y libera energía que se revela mediante una deposición de calor. Para lo que sigue, nos centraremos en la desintegración de tipo «beta» que emite un electrón acompañado de un neutrino. El electrón se absorbe tan pronto como se produce, pero el neutrino tiene la propiedad muy notable de poder atravesar mucha materia sin detenerse. Toda la Tierra es transparente a los neutrinos y por tanto la detección de neutrinos generados por desintegraciones radiactivas dentro de la Tierra permite, en principio, echar un vistazo a lo que está sucediendo a gran profundidad.

Los geoneutrinos, el nombre que se le da a estas partículas producidas por nuestro planeta, proporcionan por tanto un método original de investigación de la Tierra profunda. Todavía tienen que ser detectados, lo que es un tour de force ya que un neutrino reacciona muy poco con la materia. No obstante, existen detectores suficientemente masivos que han demostrado ser adecuados para dicha investigación.

Mapa mundial de neutrinos terrestres © SM Usman et al. / Agencia de Inteligencia y Geoespacial de EE. UU. / AGM2015

Las principales fuentes de geoneutrinos son elementos pesados ​​con una vida útil muy larga, cuyas propiedades se conocen con precisión gracias a estudios de laboratorio. Estos son principalmente los elementos uranio, torio y potasio. Por ejemplo, la desintegración del núcleo del uranio 238 da un promedio de 6 neutrinos al mismo tiempo que libera 52 megaelectronvoltios de energía transportada por las partículas emitidas que se detendrán en la materia y depositarán calor. Cada neutrino transporta una energía de alrededor de 2 megaelectronvoltios. Recuerde que una energía de 1 megaelectronvoltio corresponde, en unidades oficiales, a 1,6 10-13 julios. Esto significa que el calor total de la Tierra requiere alrededor de 1.025 desintegraciones por segundo. ¿Podemos detectar estos neutrinos?

¿Cómo ver los geoneutrinos?

En la práctica, estamos limitados a tomar una medición general en el punto donde se encuentra el dispositivo que ve flujos provenientes de todas las direcciones. Entonces es complicado obtener la información precisa sobre los orígenes, no se puede medir la dirección de llegada. Tenemos que confiar en modelos a partir de los cuales desarrollamos simulaciones por computadora. Conociendo los espectros de energía de cada modo de desintegración y modelando la densidad y ubicación de los diferentes estratos geológicos que contribuyen al resultado final, extraemos un espectro global de los neutrinos esperados y deducimos el número de eventos predichos en un detector dado . Este número sigue siendo muy bajo: equivale a un puñado de eventos por kilotonelada de detector y por año.

Dos experimentos contribuyeron recientemente a esta investigación: Kamland, un detector que acecha bajo una montaña japonesa que pesa 1.000 toneladas y
Borexino instalado en una galería excavada bajo la montaña Gran Sasso en Italia y con un peso de 280 toneladas. En ambos casos, el medio sensible consiste en un “centelleador líquido”. De hecho, para
detectar geoneutrinos o
del cosmos, es necesario implementar una detección efectiva a bajas energías: es la excitación de átomos de un líquido centelleante. Un neutrino interactúa con un protón y se revelan las partículas producidas. bien por la luz que sabemos localizar.

El experimento Sno + utiliza el detector Snolab en Canadá, especialmente para detectar geoneutrinos | © SnoLab / Flickr

Kamland anuncia más de 100 eventos y Borexino una veintena de eventos atribuibles a geoneutrinos con incertidumbres del 20 al 30%. No sabemos cómo volver a su punto de emisión, pero esta medición global, aunque bastante burda, es suficiente para mostrar la concordancia con las predicciones de las simulaciones dentro del límite de las estadísticas débiles obtenidas.

Así, la hipótesis avanzado en el pasado Ahora se excluye la presencia de un reactor nuclear en el centro de nuestra Tierra, que habría estado formado por una bola de uranio que se agrieta como en los reactores que producen electricidad. La fisión es un tipo de radiactividad que ya no es espontánea, sino simulada.

En el futuro, esperamos la contribución de detectores nuevos y más eficientes en preparación en Canadá, SNO +, y en China,
Juno, lo que afinará nuestro conocimiento sobre geoneutrinos.

“Lejos de ser un empobrecimiento, la adición a lo visible de lo invisible hace más que enriquecerlo, le da un sentido, lo completa. »(Paul Claudel, Cargos y propuestas, 1928).

Este análisis fue escrito por François Vannucci, investigador en física de partículas, especialista en neutrinos (Universidad de París). El artículo original fue publicado en el sitio web de La conversación.

READ  Señal de radio de una estrella cercana

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

La NASA publica impresionantes time-lapses de supernovas que muestran 20 años en 20 segundos

Published

on

La NASA publica impresionantes time-lapses de supernovas que muestran 20 años en 20 segundos

La NASA ha lanzado dos nuevas películas que muestran observaciones cambiantes de dos fuentes bien conocidas en el cielo: Casiopea A y la Nebulosa del Cangrejo. Los dos protagonistas son los restos de estrellas masivas que se convirtieron en supernovas en nuestra galaxia. Los vídeos a intervalos condensan 20 años de datos del telescopio de rayos X Chandra en sólo 20 segundos espectaculares.

La explosión que creó la Nebulosa del Cangrejo apareció en nuestro cielo hace casi 1.000 años, en 1054. Fue reportada por astrónomos chinos y muchos otros en todo el mundo (la falta de menciones en Europa podría tener que ver con la Iglesia Católica). La supernova dejó un púlsar y Chandra pudo rastrear los cambios muy energéticos alrededor de este objeto extremo entre 2000 y 2022.

Esto ya es extraordinario, y se realizarán aún más observaciones, ya que el chorro visible en las observaciones de 2022 será rastreado nuevamente a finales de este año.

El púlsar en el centro de la Nebulosa del Cangrejo visto a lo largo del tiempo.

Crédito de la imagen: NASA/CXC/SAO; Procesamiento de imágenes: NASA/CXC/SAO/J. Schmidt, J. Major, A. Jubett, K. Arcand

Cassiopeia A es un remanente de supernova mucho más joven. Era visible desde la Tierra hace 340 años y Chandra también lo ha estado observando desde 2000. Las observaciones anteriores que mostraban sus cambios se centraban en el período de 2000 a 2013, pero en el nuevo lapso de tiempo esto se ha extendido hasta 2018. Las ondas de choque son visibles en observaciones, donde las partículas se aceleran y emiten rayos X.

Casiopea A tiene una estrella de neutrones en su corazón, descubierta por Chandra poco después del lanzamiento del telescopio en 1999. Las observaciones fueron esenciales para ayudarnos a comprender mejor cómo las estrellas se convierten en supernovas y cómo se forman estrellas de neutrones y púlsares regulares durante este proceso.

Las imágenes de Cassiopeia A fueron reprocesadas recientemente con una nueva técnica que llevó la aguda visión de Chandra al límite. Las dos nuevas películas muestran la capacidad de Chandra para demostrar observaciones y datos capturados durante un período humano.

El artículo que describe la nueva técnica de imagen se publica en La revista de astrofísica.

Continue Reading

Horoscopo

Corea del Sur lanzará un centro de seguridad espacial bajo la supervisión de una agencia de espionaje

Published

on

Corea del Sur lanzará un centro de seguridad espacial bajo la supervisión de una agencia de espionaje

Corea del Sur envía su primer satélite espía a órbita el 2 de diciembre desde la Estación Espacial Vandenberg de California. (Espacio X)

Corea del Sur se está preparando para establecer un centro de seguridad espacial bajo el Servicio de Inteligencia Nacional.

Como parte de las revisiones del decreto presidencial que entró en vigor el martes, el NIS gestionará el Centro Nacional de Seguridad Espacial, dedicado a actividades de inteligencia relacionadas con el sector espacial.

Con el lanzamiento del centro, la agencia de espionaje del país tendrá la autoridad para responder a las amenazas a los activos y sistemas espaciales del país y otras amenazas enemigas en el dominio espacial, además de recopilar y analizar inteligencia espacial.

El NIS desarrollará y difundirá tecnologías para mejorar la seguridad espacial, y su director asumirá funciones relacionadas con el Centro de Operaciones de Satélites de Corea junto con el ministro de Ciencia, según el decreto revisado.

El decreto revisado también otorga a la agencia de espionaje la autoridad para participar en las operaciones de los dos satélites de reconocimiento militar de Corea del Sur y otros activos espaciales.

Las últimas revisiones de la orden ejecutiva presidencial sobre seguridad espacial se realizaron para aclarar el alcance de los programas de la agencia de espionaje ampliados mediante una enmienda a la Ley del Servicio Nacional de Inteligencia en diciembre de 2020. La enmienda añadió espacio de seguridad al papel y las responsabilidades de la agencia.

Oficiales militares de Corea del Sur dicen que Corea del Norte podría enviar nuevos satélites espías al espacio después de que el primero fuera puesto en órbita con éxito en noviembre pasado.

READ  IMAGEN DEL DÍA: El Telescopio Espacial Hubble de la NASA detecta una galaxia de medusas con zarcillos de gas

Aunque Shin Won-sik, jefe de defensa de Seúl, no cree que el único satélite de reconocimiento militar de Corea del Norte sea capaz de llevar a cabo «actividades de espionaje significativas», los futuros satélites podrían equiparse con capacidades mejoradas con la ayuda de Rusia.

En una cumbre celebrada en septiembre del año pasado, Rusia dijo que proporcionaría a Corea del Norte tecnologías espaciales como parte de la ampliación de la cooperación militar entre los dos países.

Continue Reading

Horoscopo

Sesgos de actualidad y tendencia central vinculados en la memoria de trabajo

Published

on

Sesgos de actualidad y tendencia central vinculados en la memoria de trabajo

Resumen: El sesgo de actualidad en la memoria de trabajo está intrínsecamente vinculado al sesgo de tendencia central, lo que proporciona una explicación unificada para estos fenómenos cognitivos generalizados. El estudio utilizó un nuevo modelo de red para simular cómo estos sesgos podrían surgir de los mismos mecanismos neuronales.

Este modelo, que refleja los comportamientos de la memoria humana y animal, indica que los errores de memoria debidos a entradas recientes pueden conducir naturalmente a un promedio de experiencias pasadas. Esta investigación, que combina modelos teóricos y datos experimentales, no sólo aclara la relación entre estos sesgos, sino que también ofrece nuevos conocimientos sobre cómo nuestro cerebro procesa y recuerda la información sensorial.

Reflejos:

  1. Modelo unificado: El estudio introdujo un modelo de red neuronal que explica tanto los sesgos de actualidad como los de tendencia central a través de un único mecanismo, desafiando la noción previamente aceptada de que eran fenómenos distintos.
  2. Base neuronal: El modelo se basa en la dinámica de la corteza parietal posterior, que influye en la recuperación de la memoria y el procesamiento sensorial, lo que ilustra cómo los recuerdos recientes pueden distorsionar la percepción hacia un promedio.
  3. Impacto práctico: Los hallazgos tienen implicaciones prácticas para comprender los procesos cognitivos y podrían conducir a mejores estrategias para combatir los sesgos relacionados con la memoria en entornos clínicos y cotidianos.

Fuente: Centro de visitantes de Sainsbury

Los neurocientíficos han revelado que el sesgo de actualidad en la memoria de trabajo conduce naturalmente a un sesgo de tendencia central, un fenómeno en el que los juicios de las personas (y de los animales) están sesgados hacia el promedio de observaciones anteriores. Sus hallazgos podrían proporcionar una idea de por qué el fenómeno es tan omnipresente.

Investigadores del laboratorio Akrami del Sainsbury Wellcome Centre de la UCL y del laboratorio Clopath del Imperial College de Londres han desarrollado un modelo de red con un módulo de memoria de trabajo y otro que tiene en cuenta historias sensoriales.

READ  ExoMars descubre agua oculta en el Gran Cañón de Marte, el cañón más grande del sistema solar
Se cree que este sesgo es una estrategia cerebral destinada a procesar patrones estadísticos de información sensorial, formulada mediante computación bayesiana. Crédito: Noticias de neurociencia

El estudio, publicado en eVidadescribe cómo el modelo muestra que los circuitos neuronales pueden dar lugar a sesgos de actualidad y tendencia central simultáneamente a través de un mecanismo único.

“Los psicólogos observaron por primera vez el sesgo de tendencia central hace más de un siglo, pero asumieron que era un fenómeno separado del reciente. Nuestros resultados implican que estos dos sesgos están más vinculados de lo que se pensaba anteriormente”, dijo Vezha Boboeva, investigadora principal del Sainsbury Wellcome Center y primera autora del artículo.

El sesgo de tendencia central, también llamado sesgo de contracción, es un fenómeno generalizado. Imagine que se le muestra una barra de una longitud determinada y se le pide que reproduzca esa misma barra, recuperada de su memoria.

Lo que solemos hacer es memorizar la longitud, en función del tamaño de la barra, recordando las barras más largas como más cortas y las más cortas como más largas. Por lo tanto, consideramos que la longitud de la barra está más cerca del promedio del rango de lo que realmente está.

El fenómeno también ocurre en otros animales, incluidos primates no humanos y roedores, y también ocurre con otras modalidades, como amplitudes y frecuencias de sonido.

Se cree que este sesgo es una estrategia cerebral destinada a procesar patrones estadísticos de información sensorial, formulada mediante computación bayesiana.

El sesgo de actualidad, también conocido como sesgo de historia a corto plazo, ocurre cuando no recuerdas un estímulo determinado porque el recuerdo del estímulo anterior permanece en tu mente.

Para comprender los procesos neuronales subyacentes tanto a los sesgos de tendencia central como de recencia, neurocientíficos de SWC y el Imperial College de Londres estudiaron los fenómenos en un modelo de red neuronal, fuertemente inspirado en resultados anteriores de roedores y experimentos con la memoria de trabajo humana.

“Mi investigación postdoctoral anterior demostró que la desactivación de la corteza parietal posterior (PPC) atenuaba el sesgo de contracción en ratas que realizaban una tarea de memoria de trabajo.

READ  IMAGEN DEL DÍA: El Telescopio Espacial Hubble de la NASA detecta una galaxia de medusas con zarcillos de gas

«También descubrimos que los sesgos debidos a recuerdos persistentes de ensayos anteriores se redujeron cuando se apagó el PPC, lo que sugiere que estos dos mecanismos podrían estar relacionados entre sí», explicó la líder del grupo Athena Akrami en SWC y autora correspondiente del artículo.

A partir de esta investigación, Boboeva y su equipo desarrollaron un modelo de red que replica resultados experimentales anteriores. En el modelo, los efectos históricos a corto plazo ocurren debido a que las entradas de PPC tienen una escala de tiempo de integración más lenta, así como a la adaptación de la tasa de despido.

«El modelo muestra que una vez que se cometen errores en la memoria de trabajo debido a estos recuerdos persistentes, surge naturalmente un sesgo de contracción, sin necesidad de hacer más suposiciones sobre el promedio sensorial histórico», explicó Boboeva.

Es importante destacar que este nuevo modelo unificador hizo predicciones específicas sobre cómo las estadísticas sensoriales afectan el rendimiento. Los investigadores utilizaron herramientas en línea para probar y verificar estas predicciones mediante la realización de experimentos psicofísicos con participantes humanos.

Los próximos pasos son probar las predicciones del modelo sobre la dinámica neuronal volviendo a analizar los conjuntos de datos existentes y recopilando nuevos datos neuronales.

Fondos: Esta investigación fue financiada por BBSRC BB/N013956/1, BB/N019008/1, Wellcome Trust 200790/Z/16/Z, Simons Foundation 564408, EPSRC EP/R035806/1, Gatsby Charitable Foundation GAT3755 y Wellcome Trust 219627/Z / . 19/Z.

Sobre esta noticia de la investigación sobre memoria y neurociencia

Autor: Abril Cashin-Garbutt
Fuente: Centro de visitantes de Sainsbury
Contactar: April Cashin-Garbutt – Centro de bienvenida de Sainsbury's
Imagen: La imagen está acreditada a Neuroscience News.

Investigacion original: Acceso libre.
«El modelo de red unificador vincula los sesgos de actualidad y tendencia central en la memoria de trabajo» por Vezha Boboeva et al. eVida


Abstracto

El modelo de red unificador vincula los sesgos de actualidad y tendencia central en la memoria de trabajo

READ  Señal de radio de una estrella cercana

El sesgo de tendencia central, o sesgo de contracción, es un fenómeno en el que el juicio sobre la magnitud de los elementos almacenados en la memoria de trabajo parece estar sesgado hacia el promedio de observaciones pasadas.

El cerebro la considera una estrategia óptima y generalmente se considera una expresión de la capacidad del cerebro para aprender la estructura estadística de la información sensorial. Por otro lado, los sesgos de actualidad, como la dependencia serial, también se observan comúnmente y se cree que reflejan el contenido de la memoria de trabajo.

Los resultados recientes de una tarea de comparación auditiva retrasada en ratas sugieren que los dos sesgos pueden estar más relacionados de lo que se pensaba anteriormente: cuando se inhibió la corteza parietal posterior (PPC), se redujeron los sesgos a corto plazo y de contracción.

Al proponer un modelo de los circuitos que pueden estar implicados en la generación de la conducta, mostramos que el contenido volátil de la memoria de trabajo que probablemente se desplace hacia experiencias sensoriales pasadas (produciendo sesgos de la historia sensorial a corto plazo) conduce naturalmente a un sesgo de contracción.

Los errores, que ocurren a nivel de pruebas individuales, se toman de toda la distribución de estímulos y no se deben a un cambio gradual de la memoria hacia la media de la distribución sensorial.

Nuestros resultados son consistentes con un amplio conjunto de hallazgos conductuales y proporcionan predicciones del desempeño en diferentes distribuciones y tiempos de estímulos, intervalos de retraso, así como dinámicas neuronales en áreas supuestas de la memoria de trabajo.

Finalmente, validamos nuestro modelo realizando una serie de experimentos psicofísicos en humanos en una tarea de memoria de trabajo paramétrica auditiva.

Continue Reading

Trending