Connect with us

Horoscopo

Cuando el universo cambia de opinión

Published

on

Cuando el universo cambia de opinión

Los físicos del RHIC están estudiando los cambios de fase de la materia nuclear a partir de colisiones de iones de oro para identificar un punto crítico en estas transformaciones. Su investigación, que recrea y examina la transición del plasma quark-gluón, un estado de la materia presente después del Big Bang, sugiere que las fluctuaciones en la formación de núcleos ligeros podrían indicar este punto crítico. Algunas discrepancias en los datos sugieren posibles fluctuaciones, pero se necesita más investigación para confirmar un hallazgo.

El análisis de los núcleos ligeros de las colisiones de iones de oro ofrece información sobre los cambios de fase de la materia primordial.

Los físicos que analizan los datos de las colisiones de iones de oro en el Colisionador de iones pesados ​​relativistas (RHIC), una instalación de usuario de la Oficina de Ciencias para la investigación de física nuclear del Departamento de Energía de los EE. UU. (DOE) en el Laboratorio Nacional de Brookhaven del DOE, están buscando evidencia -llamado punto crítico en la forma en que el material nuclear pasa de una fase a otra.

Nuevos hallazgos de los miembros de la colaboración RHIC STAR publicados en una revista STAR Time Projection Chamber

The “heart” of the STAR detector at Brookhaven’s Relativistic Heavy Ion Collider is the Time Projection Chamber, which tracks and identifies particles emerging from ion collisions. Credit: Brookhaven National Laboratory

“You can imagine the nuclear phase diagram as a bridge connecting the past—the Big Bang and the early universe—to visible matter as we know it today, and even neutron stars,” said Xiaofeng Luo, a member of RHIC’s STAR Collaboration from Central China Normal University (CCNU), who led a group of students in this analysis. “It’s important scientifically and to human understanding of where we come from.”

Critical point search party

RHIC’s collisions recreate a hot, dense state of matter that existed for a tiny fraction of a second right after the Big Bang some 14 billion years ago. This matter, called a quark-gluon plasma (QGP), is a soup of “free” quarks and gluons—the building blocks of the protons and neutrons that make up atomic nuclei. Colliding heavy ions at various energies allows RHIC physicists to study how the collisions create this primordial soup and how it transitions back into ordinary nuclear matter.

To look for signs of a critical point—where the type of transition from QGP to ordinary matter changes from a smooth crossover (where two phases coexist, as when butter gradually melts on a warm day) to a sudden shift (like water suddenly boiling)—the scientists look for fluctuations in things they measure coming out of the collisions.

Mapping Nuclear Phase Changes

Mapping nuclear phase changes is like studying how water changes under different conditions of temperature and pressure (net baryon density for nuclear matter). RHIC’s collisions “melt” protons and neutrons to create quark-gluon plasma (QGP). STAR physicists are exploring collisions at different energies, turning the “knobs” of temperature and baryon density, to look for signs of a “critical point.” Credit: Brookhaven National Laboratory

A previous study found tantalizing signs of the type of fluctuations scientists would expect around the critical point by looking at the number of net protons produced at the various collision energies. Protons, each made of three quarks, form as the QGP cools, and can serve as stand-ins for the overall baryon density (baryons being all particles made of three quarks, which also includes neutrons).

Scientists expect that as the baryon density of matter increases, it’s more likely these protons and neutrons will coalesce, or come together, to form lightweight nuclei when the QGP “freezes out.” So, in this study, they tried to track the yield of one type of lightweight nucleus known as a triton—made of one proton and two neutrons. Seeing fluctuation patterns in triton production might help them zero in on the critical point.

As in the previous study, the data were collected by the Solenoidal Tracker at RHIC, a particle detector known as STAR, during phase one of the Beam Energy Scan (BES-I). This program recorded snapshots of collisions at various energies and temperatures from 2010 to 2017, capturing changes in the numbers and types of particles streaming out. This new analysis builds upon a paper that Brookhaven physicist Zhangbu Xu and colleagues published in 2017, predicting that the yield ratio of light nuclei such as tritons should be tied to the critical point.

Tracking Fluctuations in the Yield Ratio of Lightweight Nuclei

Tracking fluctuations in the yield ratio of lightweight nuclei such as deuterons and tritons emerging from collisions within the STAR detector should be sensitive to a critical point. The data (red points) mostly match predictions (shaded areas), but two outlying points may be signs of the types of fluctuations scientists expect to see around the critical point. Credit: STAR Collaboration

“The formation of these light nuclei requires a certain baryon density,” said Dingwei Zhang, a member of RHIC’s STAR Collaboration and PhD student at CCNU. “If the system is approaching the critical point, the baryon density fluctuates a lot. So, we wanted to see through this analysis if we will see the fluctuations, therefore pin down the critical point.”

The data at most of the collision energies analyzed matched theorists’ models of how new nuclei would form as protons and neutrons come together through coalescence. But at two points—from collisions at 19.6 billion election volts (GeV) and 27 GeV—the data jumped out of the baseline predicted by the model, hinting at those coveted fluctuations.

The points offer a combined significance that still falls below the level required to claim a physics discovery.

“We hoped this analysis would be sensitive to the critical point,” Luo said. “We are very happy to see these outliers here and it’s certainly encouraging. Eventually, if the critical point exists in the energy range we covered, all these observables should give a consistent signal.”

Researchers are looking forward to seeing what analyses of a plethora of additional collision data will show. In 2021, the STAR collaboration successfully completed the second phase of the Beam Energy Scan (BES II), which captured gold smashup snapshots at various RHIC energies, including the lowest energy of 3 GeV.

“We hope that the BES II data will help us enhance the sensitivity to a critical point signal,” Luo said. “With higher statistics, we may be able to reach the level of significance required to claim a discovery. And that would be big.”

Reference: “Beam Energy Dependence of Triton Production and Yield Ratio (Nt×Np/N2d) in Au+Au Collisions at RHIC” by M. I. Abdulhamid et al. (STAR Collaboration), 16 May 2023, Physical Review Letters.
DOI: 10.1103/PhysRevLett.130.202301

The research was funded by the DOE Office of Science (NP), the U.S. National Science Foundation, and a range of international organizations and agencies listed in the scientific paper.

READ  SpaceX recolecta la segunda nave espacial Cargo Dragon mejorada para su futura reutilización

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Los astrónomos resuelven el misterio de la dramática explosión de FU Orionis en 1936

Published

on

Los astrónomos resuelven el misterio de la dramática explosión de FU Orionis en 1936

Impresión artística de la vista a gran escala de FU~Ori. La imagen muestra los flujos producidos por la interacción entre los fuertes vientos estelares alimentados por la explosión y la envoltura residual a partir de la cual se formó la estrella. El viento estelar provoca un fuerte choque en la envoltura, y el gas CO arrastrado por el choque es lo que reveló el nuevo ALMA. Crédito: NSF/NRAO/S. Dagnello

ALMA Las observaciones de FU Orionis revelan cómo la acreción gravitacional de un flujo de gas pasado provoca un brillo repentino en estrellas jóvenes, arrojando luz sobre los procesos de formación de estrellas y planetas.

Un grupo inusual de estrellas en la constelación de Orión ha revelado sus secretos. FU Orionis, un sistema de estrellas dobles, atrajo por primera vez la atención de los astrónomos en 1936, cuando la estrella central de repente se volvió 1.000 veces más brillante de lo habitual. Este comportamiento, esperado en estrellas moribundas, nunca se había observado en una estrella joven como FU Orionis.

Este extraño fenómeno inspiró una nueva clasificación de estrellas que comparten el mismo nombre (FUo estrellas). Las estrellas FUor estallan repentinamente, alcanzando su brillo, antes de atenuarse nuevamente varios años después.

Ahora se entiende que este brillo se debe a que las estrellas absorben energía de su entorno a través de la acreción gravitacional, la fuerza principal que da forma a las estrellas y los planetas. Sin embargo, cómo y por qué sucede esto ha seguido siendo un misterio hasta ahora, gracias a que los astrónomos utilizan el Atacama Large Millimeter/submillimeter Array (ALMA).

READ  SpaceX recolecta la segunda nave espacial Cargo Dragon mejorada para su futura reutilización

Observaciones innovadoras con ALMA

“FU Ori ha estado devorando materia durante casi 100 años para mantener su erupción. Finalmente hemos encontrado una respuesta a cómo estas estrellas jóvenes y brillantes reponen su masa”, dice Antonio Hales, subdirector del Centro Regional Norteamericano ALMA, científico del Observatorio Nacional de Radioastronomía y autor principal de la investigación, publicada el 29 de abril. . en el Revista de Astrofísica. «Por primera vez, tenemos evidencia de observación directa del material que alimenta las erupciones».


Acérquese al sistema binario FU Ori y al transmisor de acreción recientemente descubierto. Esta impresión artística muestra la serpentina recién descubierta alimentando constantemente la masa de la envoltura al sistema binario. Crédito: NSF/NRAO/S. Dagnello

Las observaciones de ALMA revelaron una larga y delgada corriente de monóxido de carbono cayendo sobre FU Orionis. Este gas no parecía contener suficiente combustible para sostener la explosión actual. En cambio, se cree que esta corriente de acreción es un remanente de una característica anterior, mucho más grande, que cayó en este joven sistema estelar.

«Es posible que la interacción con un flujo de gas más grande en el pasado haya hecho que el sistema sea inestable y haya provocado un aumento en el brillo», dice Hales.

Progresos en la comprensión de la formación estelar

Los astrónomos utilizaron varias configuraciones de antenas de ALMA para capturar los diferentes tipos de emisiones de FU Orionis y detectar flujos de masa en el sistema estelar. También combinaron nuevos métodos numéricos para modelar el flujo másico como una corriente de acreción y estimar sus propiedades.

«Comparamos la forma y la velocidad de la estructura observada con las que se esperaban de un rastro de gas entrante, y los números tenían sentido», dice Aashish Gupta, Ph.D. candidato al Observatorio Europeo Austral (ESO), y coautor de este trabajo, quien desarrolló los métodos utilizados para modelar el transmisor de acreción.

Streamer de acreción del sistema binario FU Ori

Acérquese al sistema binario FU Ori y al transmisor de acreción recientemente descubierto. Esta impresión artística muestra la serpentina recién descubierta alimentando constantemente la masa de la envoltura al sistema binario. Crédito: NSF/NRAO/S. Dagnello

“La gama de escalas angulares que podemos explorar con un solo instrumento es realmente notable. ALMA nos brinda una visión integral de la dinámica de la formación de estrellas y planetas, desde las grandes nubes moleculares en las que nacen cientos de estrellas hasta las escalas más familiares de los sistemas solares”, agrega Sebastián Pérez de la Universidad de Santiago de Chile (USACH) . ), director del Núcleo Milenio sobre Exoplanetas Jóvenes y sus Lunas (YEMS) en Chile, y coautor de esta investigación.

READ  Después de 8 años de arduo trabajo, el 'Mangalyaan' de India se queda sin combustible: informe

Estas observaciones también revelaron una lenta salida de monóxido de carbono de FU Orionis. Este gas no está asociado con la explosión más reciente. Más bien, es similar a los flujos observados alrededor de otros objetos protoestelares.

Hales añade: “Al comprender cómo se forman estas estrellas FUor en particular, confirmamos lo que sabemos sobre cómo se forman las diferentes estrellas y planetas. Creemos que todas las estrellas experimentan explosiones. Estas explosiones son importantes porque afectan la composición química de los discos de acreción alrededor de las estrellas nacientes y los planetas que eventualmente forman.

«Hemos estado estudiando FU Orionis desde las primeras observaciones de ALMA en 2012», añade Hales. Es fascinante tener finalmente respuestas.

Referencia: “Descubrimiento de una serpentina de acreción y un flujo lento de alto ángulo alrededor de FU Orionis” por AS Hales, A. Gupta, D. Ruíz-Rodríguez, JP Williams, S. Pérez, L. Cieza, C. González-Ruilova, JE Pineda, A. Santamaría-Miranda, J. Tobin, P. Weber, Z. Zhu y A. Zurlo, 29 de abril de 2024, La revista de astrofísica.
DOI: 10.3847/1538-4357/ad31a1

Continue Reading

Horoscopo

El cuarteto copia el espacio en Clark para convertirse en el Centro de Aprendizaje Judío Jabad de Evanston

Published

on

El cuarteto copia el espacio en Clark para convertirse en el Centro de Aprendizaje Judío Jabad de Evanston
Captura de imagen recortada de Google, noviembre de 2022

En algún momento antes de septiembre, el espacio de 2,300 pies cuadrados en 825 Clark St., anteriormente ocupado por Quartet Copies, probablemente volverá a estar lleno de actividad como el Centro de Aprendizaje Judío Jabad de Evanston.

En una llamada telefónica, el rabino Meir Hecht de Jabad de Evanston confirmó que Jabad compró el espacio a principios de 2024.

Espacio de aprendizaje y biblioteca abiertos al público.

Charles Davidson de Charles Davidson Group presentó la solicitud de análisis de zonificación en línea el 25 de febrero y la solicitud fue aprobada el 11 de marzo.

La solicitud incluía una carta de Hecht, como director de la Fundación de Aprendizaje Judío, que indicaba que el futuro centro de aprendizaje ofrecería clases para adultos diarias y nocturnas, una escuela hebrea para niños los domingos por la mañana, un salón después de la escuela para adolescentes, un salón después de la escuela. un programa de escuela de artes hebreas y una biblioteca abierta de domingo a jueves.

Actualmente, estas actividades se llevan a cabo en los hogares de las personas, en la Universidad Northwestern o en el Centro Comunitario Fleetwood-Jourdain. Hasta la pandemia, el programa de arte extraescolar se llevaba a cabo en las escuelas del Distrito 65. Hecht dijo que está ansioso por ponerlo en marcha nuevamente.

Los servicios de adoración se llevarían a cabo el viernes por la noche y el sábado por la mañana, así como durante los días festivos religiosos. Jabad Evanston ya cuenta con un espacio abierto y sin renovar para séders, almuerzos y servicios de Pesaj, dijo Hecht.

«Además, proporcionaremos a la comunidad una extensa biblioteca judía abierta al público para estudiar y leer», escribió Hecht. “La biblioteca y la sala de estudio/lectura serán un espacio acogedor para los miembros de la comunidad de todas las edades a diario.

READ  Una historia de eclipses solares y respuestas extrañas a ellos.

“Esperamos que este nuevo centro de aprendizaje judío sea un faro de luz para toda la comunidad de Evanston. Todos son bienvenidos”, dijo Hecht.

Continue Reading

Horoscopo

Comparación de la tripulación comercial Boeing Starliner y SpaceX Dragon de la NASA

Published

on

Comparación de la tripulación comercial Boeing Starliner y SpaceX Dragon de la NASA
Continue Reading

Trending