Connect with us

Horoscopo

Científicos descubren nueva física en la búsqueda de materia oscura

Published

on

Científicos descubren nueva física en la búsqueda de materia oscura

Se estima que el 85% de la masa del universo es materia oscura, una forma hipotética de materia.

No, los científicos aún no tienen idea de qué es la materia oscura. Sin embargo, los científicos de la MSU ayudaron a descubrir nueva física mientras la investigaban.

Wolfgang «Wolfi» Mittig y Yassid Ayyad comenzaron su búsqueda de la materia oscura, también llamada la masa perdida del universo, en el corazón de un[{» attribute=»»>atom around three years ago.

Even though their exploration did not uncover dark matter, the scientists nonetheless discovered something that had never been seen before that defied explanation. Well, at least an explanation on which everyone could agree.

“It’s been something like a detective story,” said Mittig, a Hannah Distinguished Professor in Michigan State University’s Department of Physics and Astronomy and a faculty member at the Facility for Rare Isotope Beams, or FRIB.

“We started out looking for dark matter and we didn’t find it,” he said. “Instead, we found other things that have been challenging for theory to explain.”

In order to make their finding make sense, the team went back to work, conducting further tests and accumulating more data. Mittig, Ayyad, and their colleagues reinforced their argument at Michigan State University’s National Superconducting Cyclotron Laboratory or NSCL.

The researchers discovered a new route to their unanticipated destination while working at NSCL, which they revealed in the journal Physical Review Letters. Additionally, they revealed intriguing physics at work in the ultra-small quantum realm of subatomic particles.

The scientists showed, in particular, that even when an atom’s center, or nucleus, is overcrowded with neutrons, it can find a route to a more stable configuration by spitting out a proton instead.

Shot in the dark

Dark matter is one of the most well-known yet least understood things in the universe. Scientists have known for decades that the universe contains more mass than we can perceive based on the motions of stars and galaxies.

Six times as much unseen mass as regular matter that we can see, measure, and classify is required for gravity to hold celestial objects to their courses. Although researchers are certain that dark matter exists, they have yet to find where and devise how to detect it directly.

“Finding dark matter is one of the major goals of physics,” said Ayyad, a nuclear physics researcher at the Galician Institute of High Energy Physics, or IGFAE, of the University of Santiago de Compostela in Spain.

Speaking in round numbers, scientists have launched about 100 experiments to try to illuminate what exactly dark matter is, Mittig said.

“None of them has succeeded after 20, 30, 40 years of research,” he said.

“But there was a theory, a very hypothetical idea, that you could observe dark matter with a very particular type of nucleus,” said Ayyad, who was previously a detector systems physicist at NSCL.

This theory centered on what it calls a dark decay. It posited that certain unstable nuclei, nuclei that naturally fall apart, could jettison dark matter as they crumbled.

So Ayyad, Mittig, and their team designed an experiment that could look for a dark decay, knowing the odds were against them. But the gamble wasn’t as big as it sounds because probing exotic decays also lets researchers better understand the rules and structures of the nuclear and quantum worlds.

The researchers had a good chance of discovering something new. The question was what that would be.

Help from a halo

When people imagine a nucleus, many may think of a lumpy ball made up of protons and neutrons, Ayyad said. But nuclei can take on strange shapes, including what are known as halo nuclei.

Beryllium-11 is an example of a halo nuclei. It’s a form, or isotope, of the element beryllium that has four protons and seven neutrons in its nucleus. It keeps 10 of those 11 nuclear particles in a tight central cluster. But one neutron floats far away from that core, loosely bound to the rest of the nucleus, kind of like the moon ringing around the Earth, Ayyad said.

Beryllium-11 is also unstable. After a lifetime of about 13.8 seconds, it falls apart by what’s known as beta decay. One of its neutrons ejects an electron and becomes a proton. This transforms the nucleus into a stable form of the element boron with five protons and six neutrons, boron-11.

But according to that very hypothetical theory, if the neutron that decays is the one in the halo, beryllium-11 could go an entirely different route: It could undergo a dark decay.

In 2019, the researchers launched an experiment at Canada’s national particle accelerator facility, TRIUMF, looking for that very hypothetical decay. And they did find a decay with unexpectedly high probability, but it wasn’t a dark decay.

It looked like the beryllium-11’s loosely bound neutron was ejecting an electron like normal beta decay, yet the beryllium wasn’t following the known decay path to boron.

The team hypothesized that the high probability of the decay could be explained if a state in boron-11 existed as a doorway to another decay, to beryllium-10 and a proton. For anyone keeping score, that meant the nucleus had once again become beryllium. Only now it had six neutrons instead of seven.

“This happens just because of the halo nucleus,” Ayyad said. “It’s a very exotic type of radioactivity. It was actually the first direct evidence of proton radioactivity from a neutron-rich nucleus.”

But science welcomes scrutiny and skepticism, and the team’s 2019 report was met with a healthy dose of both. That “doorway” state in boron-11 did not seem compatible with most theoretical models. Without a solid theory that made sense of what the team saw, different experts interpreted the team’s data differently and offered up other potential conclusions.

“We had a lot of long discussions,” Mittig said. “It was a good thing.”

As beneficial as the discussions were — and continue to be — Mittig and Ayyad knew they’d have to generate more evidence to support their results and hypothesis. They’d have to design new experiments.

The NSCL experiments

In the team’s 2019 experiment, TRIUMF generated a beam of beryllium-11 nuclei that the team directed into a detection chamber where researchers observed different possible decay routes. That included the beta decay to proton emission process that created beryllium-10.

For the new experiments, which took place in August 2021, the team’s idea was to essentially run the time-reversed reaction. That is, the researchers would start with beryllium-10 nuclei and add a proton.

Collaborators in Switzerland created a source of beryllium-10, which has a half-life of 1.4 million years, that NSCL could then use to produce radioactive beams with new reaccelerator technology. The technology evaporated and injected the beryllium into an accelerator and made it possible for researchers to make a highly sensitive measurement.

When beryllium-10 absorbed a proton of the right energy, the nucleus entered the same excited state the researchers believed they discovered three years earlier. It would even spit the proton back out, which can be detected as a signature of the process.

“The results of the two experiments are very compatible,” Ayyad said.

That wasn’t the only good news. Unbeknownst to the team, an independent group of scientists at Florida State University had devised another way to probe the 2019 result. Ayyad happened to attend a virtual conference where the Florida State team presented its preliminary results, and he was encouraged by what he saw.

“I took a screenshot of the Zoom meeting and immediately sent it to Wolfi,” he said. “Then we reached out to the Florida State team and worked out a way to support each other.”

The two teams were in touch as they developed their reports, and both scientific publications now appear in the same issue of Physical Review Letters. And the new results are already generating a buzz in the community.

“The work is getting a lot of attention. Wolfi will visit Spain in a few weeks to talk about this,” Ayyad said.

An open case on open quantum systems

Part of the excitement is because the team’s work could provide a new case study for what is known as open quantum systems. It’s an intimidating name, but the concept can be thought of like the old adage, “nothing exists in a vacuum.”

Quantum physics has provided a framework to understand the incredibly tiny components of nature: atoms, molecules, and much, much more. This understanding has advanced virtually every realm of physical science, including energy, chemistry, and materials science.

Much of that framework, however, was developed considering simplified scenarios. The super small system of interest would be isolated in some way from the ocean of input provided by the world around it. In studying open quantum systems, physicists are venturing away from idealized scenarios and into the complexity of reality.

Open quantum systems are literally everywhere, but finding one that’s tractable enough to learn something from is challenging, especially in matters of the nucleus. Mittig and Ayyad saw potential in their loosely bound nuclei and they knew that NSCL, and now FRIB could help develop it.

NSCL, a National Science Foundation user facility that served the scientific community for decades, hosted the work of Mittig and Ayyad, which is the first published demonstration of the stand-alone reaccelerator technology. FRIB, a U.S. Department of Energy Office of Science user facility that officially launched on May 2, 2022, is where the work can continue in the future.

“Open quantum systems are a general phenomenon, but they’re a new idea in nuclear physics,” Ayyad said. “And most of the theorists who are doing the work are at FRIB.”

But this detective story is still in its early chapters. To complete the case, researchers still need more data and more evidence to make full sense of what they’re seeing. That means Ayyad and Mittig are still doing what they do best and investigating.

“We’re going ahead and making new experiments,” said Mittig. “The theme through all of this is that it’s important to have good experiments with strong analysis.”

Reference: “Evidence of a Near-Threshold Resonance in 11B Relevant to the β-Delayed Proton Emission of 11Be” Y. Ayyad, W. Mittig, T. Tang, B. Olaizola, G. Potel, N. Rijal, N. Watwood, H. Alvarez-Pol, D. Bazin, M. Caamaño, J. Chen, M. Cortesi, B. Fernández-Domínguez, S. Giraud, P. Gueye, S. Heinitz, R. Jain, B. P. Kay, E. A. Maugeri, B. Monteagudo, F. Ndayisabye, S. N. Paneru, J. Pereira, E. Rubino, C. Santamaria, D. Schumann, J. Surbrook, L. Wagner, J. C. Zamora and V. Zelevinsky, 1 June 2022, Physical Review Letters.
DOI: 10.1103/PhysRevLett.129.012501

NSCL was a national user facility funded by the National Science Foundation, supporting the mission of the Nuclear Physics program in the NSF Physics Division.

READ  Las simulaciones de supercomputadoras revelan cómo un impacto gigante podría haber formado la Luna

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Descubrimiento sorpresa revela el primer ancestro conocido de escorpiones y arañas: ScienceAlert

Published

on

Descubrimiento sorpresa revela el primer ancestro conocido de escorpiones y arañas: ScienceAlert

Una pequeña bestia segmentada que nadó en los mares de la Tierra hace casi 500 millones de años ha sido identificada ahora como el abuelo de las arañas, los escorpiones y los cangrejos herradura.

Se llama Setapedites abundanteuna criatura diminuta, de unos 5 milímetros de largo, que prosperó en un océano que una vez cubrió lo que hoy es Marruecos, hace 478 millones de años.

Hoy, al analizar sus fósiles más de 20 años después de su primer descubrimiento, los paleontólogos se han dado cuenta de que pertenecía al clado de artrópodos Euchelicerata.

«Al principio sólo pretendíamos describir y nombrar este fósil. No teníamos ni idea de que guardaría tantos secretos». dice el paleontólogo Lorenzo Lustri de la Universidad de Lausana en Suiza.

«Así que fue una sorpresa estimulante darnos cuenta, después de cuidadosas observaciones y análisis, de que también llenaba un vacío importante en el árbol evolutivo de la vida».

Impresión artística de Setapedites abundante. (Elissa Sorojsrisom)

Artrópodos son un grupo de invertebrados muy diverso y abundante que incluye insectos, miriápodos, crustáceos y arácnidos, que en conjunto representan aproximadamente 75 por ciento de la vida animal del mundo. Dentro de este grupo existen subgrupos. Los quelicerados son artrópodos que tienen quelíceros – piezas bucales con forma de colmillos o pinzas, utilizadas para capturar y envenenar a sus presas.

Este grupo incluye arañas, escorpiones, cangrejos herradura, ácaros y garrapatas, así como varios grupos extintos, como los escorpiones de mar. Pero no sabemos exactamente cuándo y cómo estos diferentes animales divergieron y comenzaron su evolución distinta, lejos del resto de los artrópodos.

Setapedites abundante Fue descubierto por primera vez a principios de la década de 2000, en una formación conocida como Fezouata Shale en Marruecos. De hecho, era el tipo de fósil más abundante de la especie, pero estudiar y caracterizar los fósiles lleva mucho tiempo y a los investigadores les llevó un tiempo llegar allí.

READ  El nuevo campo ofrece espacio para la recreación y las vistas panorámicas

Lustri y sus colegas estudiaron varios ejemplos fosilizados de la criatura, perfectamente conservados en las suaves y finas lutitas que alguna vez fueron limo en el fondo marino. Y descubrieron características anatómicas llamadas birrame apéndices (de dos ramas) en el lomo del animal.

Diagrama que cataloga los apéndices en Setapedites abundante. (Lusti et al., Nat. común., 2024)

Estos apéndices y su posición permitieron a los investigadores ubicar con confianza a la especie como miembro de la familia Offacolidae, un género que incluye solo otra especie, Offacolus kingique vivió durante el silurianoHace entre 444 y 420 millones de años.

Los Offacolidae son euchelicerados, lo que significa que Setapedites abundante ahora representa el miembro más antiguo conocido de esta rama particular del árbol genealógico de los artrópodos, llenando el vacío entre los primeros artrópodos y los Euchelicerata.

Por ahora se ha identificado la posición del fósil. El siguiente paso es estudiarlo con más profundidad para comprender mejor el surgimiento y evolución de sus características únicas y, por lo tanto, cómo llegamos a tener las arañas que conocemos y amamos hoy.

Los hallazgos del equipo fueron publicados en Comunicaciones naturales.

Continue Reading

Horoscopo

La misión Euclid descubre 1,5 billones de estrellas huérfanas a la deriva en el espacio

Published

on

La misión Euclid descubre 1,5 billones de estrellas huérfanas a la deriva en el espacio

La imagen, capturada por el satélite Euclid, muestra el cúmulo de galaxias de Perseo bañado por una suave luz azul que emana de estrellas huérfanas. Estas estrellas huérfanas están dispersas por todo el cúmulo, extendiéndose hasta 2 millones de años luz desde su centro. Los cúmulos de galaxias destacan como formas elípticas luminosas contra la oscura extensión del espacio. Crédito: ESA/Euclid/Consorcio Euclid/NASA, procesamiento de imágenes por M. Montes (IAC) y J.-C Cuillandre (CEA Paris-Saclay)

Las primeras imágenes científicas de Euclides han revelado más de 1,5 billones de estrellas huérfanas en el cúmulo de Perseo, arrojando luz sobre sus orígenes y la estructura del cúmulo.

Más de 1,5 billones de estrellas huérfanas esparcidas por el cúmulo de Perseo han sido reveladas en las primeras imágenes científicas de la misión del satélite Euclid.

Este descubrimiento, liderado por astrónomos de la Universidad de Nottingham, arroja nueva luz sobre los orígenes de estos vagabundos celestes.

Ubicado aproximadamente a 240 millones de años luz de la Tierra, el cúmulo de Perseo es una de las estructuras más masivas del universo y contiene miles de galaxias. Dentro de esta vasta extensión, el satélite Euclid detectó luces tenues y fantasmales (estrellas huérfanas) a la deriva entre las galaxias del cúmulo.

Sorpresas de estrellas huérfanas

Dado que las estrellas se forman naturalmente dentro de las galaxias, la presencia de estrellas huérfanas fuera de estas estructuras ha planteado preguntas intrigantes sobre sus orígenes.

La profesora Nina Hatch, quien dirigió el equipo del proyecto, dijo: “Nos sorprendió nuestra capacidad de ver tan lejos en las regiones exteriores del cúmulo y discernir los colores sutiles de esta luz. Esta luz puede ayudarnos a mapear la materia oscura si entendemos de dónde provienen las estrellas dentro del cúmulo. Al estudiar sus colores, brillo y configuraciones, descubrimos que provenían de galaxias pequeñas.

READ  Misteriosa población de planetas rebeldes avistados cerca del centro de nuestra galaxia

Las estrellas huérfanas se caracterizan por su tinte azulado y su disposición en cúmulos. Basándose en estas características distintivas, los astrónomos involucrados en el estudio sugieren que las estrellas fueron arrancadas de las afueras de las galaxias y completamente fragmentadas en cúmulos de galaxias más pequeñas, llamadas enanas.

Patrones orbitales inesperados

Después de ser separadas de sus galaxias madre, se esperaba que las estrellas huérfanas orbitaran la galaxia más grande del cúmulo. Sin embargo, este estudio reveló un descubrimiento sorprendente: las estrellas huérfanas giraban alrededor de un punto situado entre las dos galaxias más luminosas del cúmulo.

El Dr. Jesse Golden-Marx, un astrónomo de Nottingham involucrado en el estudio, comentó: “Esta nueva observación sugiere que el enorme cúmulo de Perseo puede haber experimentado recientemente una fusión con otro grupo de galaxias. Esta reciente fusión podría haber causado una perturbación gravitacional, provocando que la galaxia más masiva o las estrellas huérfanas se desviaran de sus órbitas esperadas, provocando así la desalineación observada.

Le Dr Matthias Kluge, premier auteur de l'étude de l'Institut Max-Planck de physique extraterrestre à Munich, en Allemagne, a déclaré : « Cette lumière diffuse est plus de 100 000 fois plus faible que le ciel nocturne le plus sombre de la tierra. Pero está distribuida en un volumen tan grande que, sumando todo, representa alrededor del 20% de la luminosidad de todo el cúmulo.

La misión y las habilidades de Euclides.

Lanzada el 1 de julio de 2023, la misión Euclid de la Agencia Espacial Europea está diseñada para explorar la composición y evolución del Universo Oscuro. El telescopio espacial creará un impresionante mapa de la estructura a gran escala del Universo en el espacio y el tiempo observando miles de millones de galaxias a hasta 10 mil millones de años luz de distancia, en más de un tercio del cielo. Euclides explorará cómo se ha expandido el Universo y cómo se ha formado su estructura a lo largo de la historia cósmica, revelando aún más el papel de la gravedad y la naturaleza de la energía y la materia oscuras.

READ  Lluvia de meteoritos de Lyrid alcanzará su punto máximo antes de abril de 2021 pink super moon

La Dra. Mireia Montes, astrónoma del Instituto de Astrofísica de Canarias que participó en el estudio, dijo: “Este trabajo sólo fue posible gracias a la sensibilidad y agudeza de Euclides. » El diseño revolucionario de Euclid significa que puede tomar imágenes con una nitidez similar a El telescopio espacial Hubblepero cubriendo un área 175 veces mayor.

Continue Reading

Horoscopo

El edificio de la montaña espacial circular toma forma

Published

on

El edificio de la montaña espacial circular toma forma

Hace cinco meses, comenzaron los trabajos de cimentación de la nueva Space Mountain en Tokyo Disneyland. Hoy, el esqueleto de un gran edificio circular está tomando forma.

Nueva construcción de Space Mountain

Sitio de construcción con varias grúas y andamios cerca de un edificio con cúpula blanca.  En los alrededores hay un aparcamiento vacío con unos cuantos conos de color naranja y una pequeña palmera.

Detrás de la atracción actual, se ha reservado un terreno para la nueva atracción. Tres grúas dominan la nueva estructura. Un lado es redondo, con vigas de acero rodeadas de andamios.

Sitio de construcción con varias grúas, andamios y máquinas industriales.  El área está rodeada por una valla, con diversos materiales y equipos de construcción esparcidos por todas partes.Sitio de construcción con varias grúas, andamios y máquinas industriales.  El área está rodeada por una valla, con diversos materiales y equipos de construcción esparcidos por todas partes.

A la derecha hay más secciones cuadradas. Aún no se han instalado los paneles que cerrarán el edificio. Hay aberturas para que los vehículos de construcción entren y salgan del espacio.

Sitio de construcción con varias grúas, andamios y materiales de construcción.  La gran estructura de acero está parcialmente terminada, rodeada de camiones, equipos y áreas valladas.Sitio de construcción con varias grúas, andamios y materiales de construcción.  La gran estructura con estructura de acero está parcialmente terminada, rodeada de camiones, equipos y áreas valladas.

Decenas de piezas de madera contrachapada cubren el suelo alrededor del sitio de construcción, que anteriormente era un estacionamiento para miembros del elenco.

La forma del edificio tal como está actualmente refleja aproximadamente cómo se verá el nuevo edificio, como se muestra en el arte conceptual (abajo). Sin embargo, la mayor parte de la forma final provendrá de paneles decorativos blancos.

EspacioMontañaTokioDisneylandiaConceptoArte1EspacioMontañaTokioDisneylandiaConceptoArte1
©Disney

La versión actual de Space Mountain, que es un clon de la versión de Disneyland, cerrará definitivamente el 31 de julio de 2024. Tokyo Disneyland rinde homenaje a la antigua atracción con Celebrating Space Mountain: The Final Ignition, que incluye una bebida de gelatina con bengalas temáticas. , decoración, sesión de fotos y merchandising de despedida. La cola de lanzamiento muestra la nueva iteración.

La Oriental Land Company anunció la nueva versión en 2022 y su inauguración está prevista para 2027. OLC está gastando 56 mil millones de yenes (437 millones de dólares) en la atracción, que se rumorea que se llamará «Space Mountain Earthrise». Las cuadrillas comenzaron a limpiar el sitio de construcción a fines de 2022 y la OLC celebró una ceremonia de inauguración en mayo de 2023.

READ  Las simulaciones de supercomputadoras revelan cómo un impacto gigante podría haber formado la Luna

La Space Mountain original se inauguró en Magic Kingdom en 1975. La versión de Disneyland se inauguró en 1977, la versión de Tokio Disneyland se inauguró con el parque en 1983, la versión de Disneyland París se inauguró en 1995 (originalmente como De la Tierra a la Luna antes de convertirse en Estrella Wars Hyperspace Mountain), y la versión de Hong Kong Disneyland se inauguró con el parque en 2005 (más tarde se convirtió en Hyperspace Mountain).

Para obtener las últimas noticias e información sobre los parques de Disney, siga WDW News Today en Gorjeo, FacebookY Instagram.

Continue Reading

Trending