Connect with us

Horoscopo

Cálculo fotónico en una dimensión temporal sintética

Published

on

Un diseño de computadora cuántica relativamente simple que usa un solo átomo para manipular fotones podría construirse con los componentes disponibles actualmente.

Ahora, los investigadores de la Universidad de Stanford han ideado un diseño más simple para computadoras cuánticas fotónicas que utilizan componentes fácilmente disponibles, según un artículo publicado el 29 de noviembre de 2021 en ÓPTICO. Su diseño propuesto utiliza un láser para manipular un solo átomo que, a su vez, puede alterar el estado de los fotones a través de un fenómeno llamado «teletransportación cuántica». El átomo se puede restablecer y reutilizar para muchas puertas cuánticas, eliminando la necesidad de construir múltiples puertas físicas separadas, reduciendo en gran medida la complejidad de construir una computadora cuántica.

“Normalmente, si quisieras construir este tipo de computadora cuántica, potencialmente tendrías que tomar miles de emisores cuánticos, hacerlos perfectamente indistinguibles y luego encajarlos en un circuito fotónico gigante”, dijo el estudiante de doctorado Ben Bartlett. en física aplicada y autor principal del artículo. “Si bien con este diseño, solo necesitamos un puñado de componentes relativamente simples, y el tamaño de la máquina no aumenta con el tamaño del programa cuántico que desea ejecutar. «

Este diseño notablemente simple solo requiere unos pocos equipos: un cable de fibra óptica, un divisor de haz, un par de interruptores ópticos y una cavidad óptica.


Una animación de la computadora cuántica fotónica propuesta por los investigadores. A la izquierda está el anillo de almacenamiento, que contiene varios fotones que se propagan hacia atrás. A la derecha está la unidad de dispersión, que se utiliza para manipular qubits de fotones. Las esferas en la parte superior, llamadas «esferas de Bloch», representan el estado matemático del átomo y uno de los fotones. Debido a que el átomo y el fotón están entrelazados, la manipulación del átomo también afecta el estado del fotón. Crédito: Ben Bartlett

Afortunadamente, estos componentes ya existen e incluso están disponibles comercialmente. También se están perfeccionando continuamente, ya que actualmente se utilizan en aplicaciones distintas de computación cuántica. Por ejemplo, las empresas de telecomunicaciones se han esforzado durante años para mejorar los cables de fibra óptica y los conmutadores ópticos.

READ  Horóscopo semanal: esto es lo que te depara el destino para la semana del 9 al 14 de noviembre

“Lo que estamos proponiendo aquí se basa en los esfuerzos y las inversiones que la gente ha hecho para mejorar estos componentes”, dijo Shanhui Fan, profesor Joseph y Hon Mai Goodman de la Escuela de Ingeniería y autor principal del artículo. «Estos no son componentes nuevos específicamente para la computación cuántica».

Un diseño original

El diseño de los científicos consta de dos secciones principales: un anillo de almacenamiento y una unidad de dispersión. El anillo de almacenamiento, que funciona de manera similar a la memoria ordinaria de una computadora, es un bucle de fibra óptica que contiene varios fotones que viajan alrededor del anillo. De manera análoga a los bits que almacenan información en una computadora convencional, en este sistema, cada fotón representa un bit cuántico o «qubit». La dirección del movimiento del fotón alrededor del anillo de almacenamiento determina el valor del qubit, que, como un bit, puede ser 0 o 1. Además, dado que los fotones pueden existir simultáneamente en dos estados a la vez, un fotón individual puede fluir. en ambas direcciones al mismo tiempo. , que representa un valor que es una combinación de 0 y 1 al mismo tiempo.

Fan de Bartlett y Shanhui

Ben Bartlett, un estudiante graduado de Stanford, y Shanhui Fan, profesor de ingeniería eléctrica, propusieron un diseño más simple para computadoras cuánticas fotónicas utilizando componentes fácilmente disponibles. Crédito: Cortesía de Ben Bartlett / Rod Seacey

Los investigadores pueden manipular un fotón dirigiéndolo desde el anillo de almacenamiento a la unidad de dispersión, donde viaja a una cavidad que contiene un solo átomo. El fotón luego interactúa con el átomo, lo que hace que los dos se entrelacen, un fenómeno cuántico por el cual dos partículas pueden influirse entre sí incluso a grandes distancias. Luego, el fotón regresa al anillo de almacenamiento y un láser cambia el estado del átomo. Debido a que el átomo y el fotón están entrelazados, la manipulación del átomo también influye en el estado de su fotón emparejado.

READ  Un astronauta toma una foto vergonzosa de los desechos espaciales a bordo de la ISS

«Al medir el estado del átomo, puede teletransportar las operaciones de fotones», dijo Bartlett. «Así que solo necesitamos un qubit atómico controlable y podemos usarlo como un proxy para manipular indirectamente todos los demás qubits de fotones».

Debido a que cualquier puerta lógica cuántica se puede compilar en una secuencia de operaciones realizadas en el átomo, puede, en principio, ejecutar cualquier programa cuántico de cualquier tamaño utilizando un solo qubit atómico controlable. Para ejecutar un programa, el código se traduce en una secuencia de operaciones que dirigen fotones a la unidad de dispersión y manipulan el qubit atómico. Debido a que puede controlar la forma en que interactúan el átomo y los fotones, el mismo dispositivo puede realizar muchos programas cuánticos diferentes.

“Para muchas computadoras cuánticas fotónicas, las puertas son estructuras físicas por las que pasan los fotones, por lo que si desea cambiar el programa actual, eso a menudo implica reconfigurar físicamente el hardware”, dijo Bartlett. “Mientras que en este caso no necesita cambiar el hardware, solo necesita darle a la máquina un conjunto diferente de instrucciones. «

Referencia: «Computación cuántica fotónica determinista en una dimensión de tiempo sintética» por Ben Bartlett, Avik Dutt y Shanhui Fan, 29 de noviembre de 2021, ÓPTICO.
DOI: 10.1364 / OPTICA.424258

El investigador postdoctoral de Stanford, Avik Dutt, también es coautor de este artículo. Fan es profesor de ingeniería eléctrica, miembro de Stanford Bio-X y afiliado al Precourt Institute for Energy.

Esta investigación fue financiada por el Departamento de Defensa de los Estados Unidos y la Oficina de Investigación Científica de la Fuerza Aérea de los Estados Unidos.

READ  La biología sintética permite a los microbios desarrollar músculo

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Enterrada en la Nebulosa Pata de Gato se encuentra una de las moléculas espaciales más grandes jamás observadas.

Published

on

Enterrada en la Nebulosa Pata de Gato se encuentra una de las moléculas espaciales más grandes jamás observadas.

Los científicos han descubierto una molécula espacial previamente desconocida mientras investigaban una región relativamente cercana de intenso nacimiento estelar, un punto cósmico a unos 5.550 años luz de distancia. Es parte de la Nebulosa Pata de Gato, también conocida como NGC 6334.

El equipo, dirigido por el estudiante graduado del Instituto Tecnológico de Massachusetts (MIT), Zachary Fried, examinó una sección de la nebulosa conocida como NGC 6334I con el Atacama Large Millimeter/submillimeter Array (ALMA). Esto reveló la presencia de una molécula compleja conocida como 2-metoxietanol, que nunca antes se había observado en el mundo natural, aunque sus propiedades habían sido simuladas en laboratorios en la Tierra.

Continue Reading

Horoscopo

La misión ClearSpace-1 cambia de objetivo en respuesta a una colisión de desechos espaciales

Published

on

La misión ClearSpace-1 cambia de objetivo en respuesta a una colisión de desechos espaciales

Imagen artística de Proba-1 en órbita ©ClearSpace

La misión de eliminación de desechos ClearSpace-1 cambió de objetivo después de detectar una colisión de desechos espaciales del objetivo con desechos imposibles de rastrear. Empresa de eliminación de desechos espaciales Espacio libre anunció la decisión el 24 de abril.

ClearSpace avanzó a la siguiente etapa de la misión ClearSpace-1 después de una revisión técnica y programática con el Agencia Espacial Europea (ESA). El objetivo de escombros se ha modificado para ajustar los requisitos de la misión, simplificar la estructura de su equipo industrial y reducir el riesgo.

Ahora se espera que la nueva misión ClearSpace-1 se encuentre con PROBA-1, una nave espacial de la ESA con capacidades totalmente autónomas que capturará y realizará una maniobra de disminución del perigeo en el veterano satélite espacial de 20 años. La misión utilizará un mecanismo de captura de cuatro brazos para agarrar el satélite cliente y luego reingresar de manera segura a la atmósfera de la Tierra, donde se quemará.

El objetivo inicial de la misión, un adaptador de carga útil VESPA que quedó en órbita durante el lanzamiento de Vega en 2013, era golpeado por otros desechos espaciales el año pasado.

La ESA ha permitido continuar con la fase preparatoria que será ejecutada por un consorcio liderado por la empresa alemana OHB SE, que suministrará el bus satélite y se encargará de la integración y lanzamiento del sistema. ClearSpace proporcionará liderazgo técnico en operaciones de proximidad y captura.

«Nos sentimos honrados de colaborar con OHB y permanecer a la vanguardia del servicio en órbita con la misión ClearSpace-1», dijo Luc Piguet, director ejecutivo de ClearSpace.

READ  Horóscopo semanal: esto es lo que te depara el destino para la semana del 9 al 14 de noviembre

Continue Reading

Horoscopo

Observe cómo el Sol retira brevemente la cola del cometa del diablo

Published

on

Observe cómo el Sol retira brevemente la cola del cometa del diablo

La nave espacial STEREO A de la NASA detectó una poderosa llamarada solar arrancando la cola del cometa Pons-Brooks, aunque rápidamente volvió a crecer. Esta no es la primera vez que STEREO A ve al Sol jugando con una bola de nieve sucia como esta, pero las imágenes son particularmente dramáticas.

Las colas de los cometas son cosas tenues que se crean cuando el viento solar empuja el gas y el polvo liberados por la sublimación del hielo lejos de la cabeza del cometa. No hace falta mucho para molestarlos; A veces se ven cometas con dos colas, una de gas y otra de polvo, apuntando en direcciones algo diferentes, siendo la cola de gas particularmente sensible a las condiciones.

Cuando las erupciones solares generan eyecciones de masa coronal (CME) desde la superficie del Sol, las partículas expulsadas pueden afectar las colas de los cometas, y la nave espacial STEREO, que rastrea las tormentas solares, ha detectado esto con frecuencia. Véase, por ejemplo, este caso de 2013 en el que se pudieron ver dos cometas en el mismo campo visual, uno de ellos moviendo la cola como un renacuajo o un espermatozoide congelado pero particularmente decidido.

Una eyección de masa coronal en 2013 que logró impactar a dos cometas a la vez, como muestra STEREO.

Crédito de la imagen: Karl Battams/NASA/STEREO/CIOC

La nave espacial STEREO no sólo observa las colas de los cometas por diversión. Me gusta su sitio web Observaciones«El uso de colas de cometas como trazadores puede proporcionar datos valiosos sobre las condiciones del viento solar cerca del Sol».

READ  Elegir el estilo de jardín adecuado suele estar motivado por el tiempo, el dinero y el espacio

Como sugiere su nombre, las naves espaciales STEREO fueron diseñadas para proporcionar vistas duales de la actividad solar, una con una órbita unas semanas más corta que la de la Tierra y la otra un poco más larga. La línea de base generalmente larga entre ellos le dio a la NASA una visión sin precedentes de la actividad solar durante una década, pero se perdió el contacto con STEREO B en 2016, e incluso una vez recuperado, los intentos de restaurarlo han fracasado.

STEREO A siguió funcionando, incluso si el acrónimo ahora es inexacto. Su nombre completo es Observatorio A de Relaciones Solar-Terrestres y continúa ayudando a los astrónomos a comprender cómo la variabilidad del Sol afecta a la Tierra. Como muestran estas imágenes, lo mismo ocurre con otros componentes del sistema solar.

El 12 de abril, STEREO A detectó un importante despegue de CME desde el Sol. Este evento se alejaba casi directamente de la Tierra, por lo que no provocó ninguna aurora aquí, aunque ocurrió otra aproximadamente al mismo tiempo. cielo iluminado sobre Tasmania. Pero una semana después, Spaceweather.com se dio cuenta el efecto que tuvo el evento sobre el cometa Pons-Brooks. En lenguaje astronómico, se trató de un «evento de desconexión» en el que la fuerza añadida del viento solar provocó que la cola del núcleo del cometa se rompiera y partiera como la bandera de Rohan hacia el espacio. Las dos torres.

El efecto fue tan fuerte en parte porque la CME era muy poderosa, pero también porque Pons-Brooks estaba a 120 millones de kilómetros (75 millones de millas) del Sol, o el 80 por ciento de la distancia de la Tierra. Aunque desde la perspectiva de STEREO A el cometa parece casi chocar con Júpiter, el planeta gigante estaba casi mil millones de kilómetros (620 millones de millas) más lejos y apenas se habría visto afectado.

READ  Los valles antiguos pueden mostrar cómo los casquetes polares responderán al cambio climático: NPR

Pons-Brooks no ha estado exactamente a la altura de su apodo últimamente. Se le puso la etiqueta de «Cometa del Diablo» porque durante su paso explotó varias veces (como en visitas anteriores) y algunas de ellas produjeron lo que parecían cuernos del diablo. Desafortunadamente, las explosiones se detuvieron justo cuando podrían haber permitido que más personas vieran el cometa. Es particularmente desafortunado que ninguna coincidiera con esta CME; imaginen una erupción que se lleva algo mucho más brillante y complejo.

La buena noticia es que, si bien los cometas a menudo se comparan con los gatos, en lo que respecta a sus colas, se parecen más a eslizones, que pueden perder sus apéndices y volver a crecer.

Continue Reading

Trending