Connect with us

Horoscopo

Finalmente resuelto un antiguo misterio sobre los insectos y la luz nocturna

Published

on

Finalmente resuelto un antiguo misterio sobre los insectos y la luz nocturna

Desde que los humanos comenzaron a utilizar el fuego, nos hemos preguntado por qué los insectos parecen tener una atracción irresistible por la luz. Con el uso moderno de la electricidad, el misterio ha adquirido una nueva importancia, ya que nuestras luces alteran el comportamiento de los insectos en todo el planeta. Los científicos afirman ahora haber comprendido por qué los insectos se sienten atraídos por las llamas. Crédito: Sam Fabián

Los científicos han descubierto que los insectos dan la espalda a las fuentes de luz durante la noche, un comportamiento que sugiere que las luces artificiales interrumpen su navegación natural. Este descubrimiento, basado en imágenes de cámaras de alta velocidad, desafía creencias arraigadas y destaca el impacto de la iluminación artificial en el comportamiento y la conservación de los insectos.

Por la noche, en el bosque nuboso de Costa Rica, un pequeño equipo de científicos internacionales encendieron una luz y esperaron. Pronto, insectos, grandes y pequeños, emergieron de la oscuridad. Mariposas con manchas como ojos fijos en cada ala. Escarabajos con armadura brillante. Moscas. Una vez, incluso una mantis religiosa. Todos realizaban la misma danza hipnótica y vertiginosa alrededor de la bombilla, como si estuvieran sujetos a ella por un hilo invisible.

El entusiasmo cundió entre el grupo de investigadores, aunque este fenómeno no era nuevo para ellos. La diferencia es que ahora cuentan con tecnología de punta y cámaras de alta velocidad -capaces de capturar las rápidas y frenéticas órbitas- para mapear los movimientos difíciles de rastrear de cientos de insectos y descubrir los secretos de su comportamiento tan extraño en el luz. la noche.

Arena de captura de movimiento Fabián

El proyecto de investigación comenzó en el laboratorio de Lin, donde trabaja Fabián y tiene una arena de captura de movimiento similar a la que se usa en las películas, solo que en la escala de los insectos. Crédito: Sam Fabián

Revelando el comportamiento de los insectos

En los datos apareció un detalle sorprendente: durante el vuelo, los insectos mantenían la espalda hacia la fuente de luz artificial.

READ  La aurora boreal podría ser visible en algunos estados el domingo, según el pronóstico

“Miras los videos en cámara lenta y ves que esto sucede una y otra vez”, dijo Yash Sondhi, reciente doctorado en ciencias biológicas de FIU. Graduado y actual investigador postdoctoral en el Museo de Historia Natural de Florida. «Tal vez cuando la gente lo nota, como cerca de sus tragaluces o de una farola, parece que están volando directamente hacia él, pero ese no es el caso».

Este comportamiento sin precedentes, publicado en la revista Comunicaciones naturalesproporciona una nueva explicación y, si bien confirma que la luz es perjudicial para los insectos, también ofrece una nueva visión de este problema de conservación.

Libélula con marcadores

Se colocaron pequeños marcadores en forma de L a lo largo del lomo de varias polillas y libélulas. Mientras volaban alrededor de la luz, también recogieron datos sobre cómo rodaban, giraban y se movían en el espacio tridimensional. Crédito: Sam Fabián

A lo largo de millones de años, los insectos han evolucionado hasta convertirse en maestros del vuelo confiando en lo más brillante que ven: el cielo. Hoy, el mundo ilustrado pone en marcha sus instintos. Los insectos piensan que el “cielo” impostor que encuentran es real y quedan atrapados en un ciclo agotador tratando de mantenerse orientados. Es un esfuerzo inútil que provoca maniobras torpes y choques ocasionales directamente contra la luz.

Gravedad, vuelo y luz artificial.

Un buen control de la gravedad es obligatorio para todos los animales.

Especialmente aquellos que vuelan, como insectos que realizan hazañas de vuelo que pueden superar las de los pilotos humanos. Cuando vuelan, experimentan una aceleración tan rápida que su detección de la gravedad se vuelve poco fiable. Necesitan el cielo, incluso de noche, para discernir la dirección y navegar mientras mantienen el control en el aire. Sin embargo, la luz artificial altera este sistema.

READ  La Estación Espacial Internacional transmitirá una transmisión de video en 4K

Sondhi comenzó a establecer la conexión entre la visión de los insectos, la luz y el vuelo cuando se unió al laboratorio del profesor asociado de biología de FIU, Jamie Theobald, en 2017.

Sin embargo, el trabajo realmente comenzó cuando encontró un grupo de especialistas en los campos del vuelo de insectos y sistemas sensoriales, decididos a recopilar e intercambiar ideas sobre una avalancha de datos de vuelo en 3D para ver qué se revelaba, si es que había algo apropiado.

Los insectos volaban en complejas revoluciones alrededor de una fuente de luz artificial.

Los insectos realizaron complejas revoluciones alrededor de una fuente de luz artificial, dándole la espalda a la bombilla, que parecían incapaces de distinguir del cielo nocturno. Crédito: Sam Fabián

Descubrimientos innovadores y consideraciones futuras

Este grupo incluía a Sondhi y Theobald, así como a Sam Fabian y Huai-Ti Lin de Colegio Imperial de Londresy Pablo Allen del Consejo para el Intercambio Educativo Internacional en Monteverde, Costa Rica.

El proyecto de investigación comenzó en el laboratorio de Lin, donde trabaja Fabián y tiene una arena de captura de movimiento similar a la que se usa en las películas, solo que en la escala de los insectos.

Luz artificial de movimiento de insectos.

Crédito: Museo de Florida

Se colocaron pequeños marcadores en forma de L a lo largo del lomo de varias polillas y libélulas. Mientras volaban alrededor de la luz, también recogieron datos sobre cómo rodaban, giraban y se movían en el espacio tridimensional.

“En uno de los primeros experimentos, dejé que una gran mariposa amarilla que tenía debajo de las alas se despegara de mi mano y volara directamente sobre la bombilla ultravioleta, e inmediatamente se volteó”, afirma. «Pero entonces no sabíamos si el comportamiento que habíamos observado y medido en el laboratorio también se observaría en la naturaleza».

Conecte dispositivos de rastreo a insectos pequeños

Colocar dispositivos de rastreo en insectos pequeños requería paciencia, destreza y práctica. Crédito: Foto del Museo de Florida por Jeff Gage

La financiación de National Geographic ayudó al equipo a viajar a Costa Rica (un país rico en insectos) con sus cámaras para averiguarlo.

READ  SpaceX autorizado para intentar el tercer lanzamiento de Starship el jueves

En total, recopilaron más de 477 vídeos que cubrían más de 11 órdenes de insectos y luego utilizaron herramientas computacionales para reconstruir los puntos a lo largo de las trayectorias de vuelo en 3D. Con los datos de captura de movimiento, los investigadores concluyeron que todos especies De hecho, giraba cuando se exponía a la luz, al igual que las grandes alas amarillas inferiores del laboratorio.

Estación Biológica Monteverde en Costa Rica

Para probar su teoría en la naturaleza, el equipo viajó a la Estación Biológica Monteverde en Costa Rica, donde instalaron luces bajo el dosel de una selva tropical. Crédito: Yash Sondhi

“Es una cuestión prehistórica. En los primeros escritos, la gente lo notó cerca del fuego”, dijo Theobald. «Resulta que todas nuestras especulaciones sobre por qué estaba sucediendo esto estaban equivocadas, por lo que definitivamente es el proyecto más genial del que he formado parte».

Aunque el estudio confirma que la luz perturba a los insectos, también sugiere que su dirección es importante. Lo peor es una bombilla orientada hacia arriba o simplemente una bombilla desnuda. Envolver o proteger puede ser esencial para compensar los impactos negativos sobre los insectos.

La luz más perturbadora para los insectos

El tipo de luz que más perturba a los insectos proviene de las bombillas orientadas hacia arriba y las que no tienen revestimiento. Envolver o proteger puede ser esencial para compensar los impactos negativos sobre los insectos. Crédito: Sam Fabián

El equipo también pensó en el color de la luz, como si los tonos fríos y cálidos tuvieran impactos diferentes. Y, por supuesto, el misterio aún inexplicable que rodea la atracción por la luz y, en primer lugar, cómo ocurre a grandes distancias.

“Me dijeron antes que no se puede preguntar por qué preguntas como ésta, que no tienen sentido”, dijo Sondhi. «Pero al perseverar y encontrar a las personas adecuadas, encontramos una respuesta en la que ninguno de nosotros había pensado realmente, pero es muy importante aumentar la conciencia sobre el impacto de la luz en las poblaciones de «insectos e informarles sobre los cambios que pueden ayudarlos». «

Referencia: “Por qué los insectos voladores se reúnen en luz artificial” por Samuel T. Fabian, Yash Sondhi, Pablo E. Allen, Jamie C. Theobald y Huai-Ti Lin, 30 de enero de 2024. Comunicaciones naturales.
DOI: 10.1038/s41467-024-44785-3

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Rompiendo la velocidad de la luz: el enigma del túnel cuántico

Published

on

Rompiendo la velocidad de la luz: el enigma del túnel cuántico

Los túneles cuánticos permiten que las partículas superen las barreras energéticas. Se ha propuesto un nuevo método para medir el tiempo que tardan las partículas en hacer túneles, lo que podría desafiar afirmaciones anteriores sobre las velocidades de túneles superluminales. Este método implica el uso de átomos como relojes para detectar diferencias horarias sutiles. Crédito: SciTechDaily.com

En un asombroso fenómeno de la física cuántica llamado túnel, las partículas parecen moverse más rápido que la velocidad de la luz. Sin embargo, los físicos de Darmstadt creen que hasta ahora no se ha medido correctamente el tiempo que tardan las partículas en entrar en un túnel. Proponen un nuevo método para detener la velocidad de las partículas cuánticas.

En la física clásica existen leyes estrictas que no se pueden eludir. Por ejemplo, si una bola que rueda carece de energía, no subirá una colina; en cambio, volverá a bajar antes de llegar a la cima. En física cuántica, este principio no es tan estricto. Aquí, una partícula puede cruzar una barrera, incluso si no tiene suficiente energía para cruzarla. Actúa como si se deslizara por un túnel, por lo que este fenómeno también se conoce como «túnel cuántico». Lejos de ser una simple magia teórica, este fenómeno tiene aplicaciones prácticas, como en el funcionamiento de las unidades de memoria flash.

Túneles cuánticos y relatividad

En el pasado, llamaron la atención los experimentos en los que las partículas penetraban más rápido que la luz. Después de todo, la teoría de la relatividad de Einstein prohíbe velocidades más rápidas que la luz. Por lo tanto, la pregunta es si en estos experimentos se “detuvo” correctamente el tiempo necesario para la construcción de túneles. Los físicos Patrik Schach y Enno Giese de la Universidad Técnica de Darmstadt están siguiendo un nuevo enfoque para definir el «tiempo» de una partícula en túnel. Ahora han propuesto un nuevo método para medir este tiempo. En su experimento, lo miden de una manera que creen que se adapta mejor a la naturaleza cuántica de los túneles. Publicaron el plan de su experimento en la famosa revista. Los científicos progresan.

Dualidad onda-partícula y túnel cuántico

Según la física cuántica, las partículas pequeñas como los átomos o las partículas ligeras tienen una naturaleza dual.

READ  SpaceX autorizado para intentar el tercer lanzamiento de Starship el jueves

Según los experimentos, se comportan como partículas o como ondas. Los túneles cuánticos resaltan la naturaleza ondulatoria de las partículas. Un “paquete de olas” rueda hacia la barrera, comparable a una ola de agua. La altura de la onda indica la probabilidad con la que la partícula se materializaría en ese lugar si se midiera su posición. Si el paquete de ondas choca contra una barrera energética, parte de él se refleja. Sin embargo, una pequeña porción atraviesa la barrera y existe una pequeña probabilidad de que la partícula aparezca al otro lado de la barrera.

Reevaluación de la velocidad del túnel

Experimentos anteriores observaron que una partícula ligera viajaba una distancia más larga después de hacer un túnel que una partícula con camino libre. Por tanto, habría viajado más rápido que la luz. Sin embargo, los investigadores tuvieron que definir la ubicación de la partícula después de su paso. Eligieron el punto más alto de su paquete de ondas.

“Pero la partícula no sigue una trayectoria en el sentido clásico de la palabra”, objeta Enno Giese. Es imposible decir exactamente dónde se encuentra la partícula en un momento dado. Por tanto, es difícil decir cuánto tiempo llevará llegar del punto A al punto B.

Un nuevo enfoque para medir el tiempo de construcción de túneles

Schach y Giese, por su parte, se inspiran en una cita de Albert Einstein: “El tiempo es lo que se lee en un reloj. » Sugieren utilizar la propia partícula del túnel como reloj. Una segunda partícula que no forma un túnel sirve como referencia. Al comparar estos dos relojes naturales, es posible determinar si el tiempo pasa más lento, más rápido o igual de rápido durante el túnel cuántico.

READ  Horóscopo: los signos que recibirán buenas noticias | Programa diario

La naturaleza ondulatoria de las partículas facilita este enfoque. La oscilación de las ondas es similar a la oscilación de un reloj. Más concretamente, Schach y Giese proponen utilizar átomos como relojes. Los niveles de energía de los átomos oscilan a determinadas frecuencias. Después de enviar un átomo Con un pulso láser, sus niveles inicialmente oscilan sincronizados: se pone en marcha el reloj atómico. Sin embargo, durante el túnel el ritmo cambia ligeramente. Un segundo pulso láser provoca que las dos ondas internas del átomo interfieran. La detección de interferencias mide la distancia entre las dos ondas de niveles de energía, que es una medida precisa del tiempo transcurrido.

Un segundo átomo, que no forma un túnel, sirve como referencia para medir la diferencia de tiempo entre la formación de túneles y la no formación de túneles. Los cálculos de los dos físicos sugieren que la partícula túnel mostrará un tiempo ligeramente retrasado. «El reloj del túnel es un poco más antiguo que el otro», explica Patrik Schach. Esto parece contradecir los experimentos que atribuían velocidad superluminal al túnel.

El desafío de implementar el experimento.

En principio, la prueba se puede realizar con la tecnología actual, explica Schach, pero para los experimentadores supone un gran desafío. De hecho, la diferencia horaria a medir es sólo de unos 10-26 segundos: un tiempo extremadamente corto. Es útil utilizar nubes de átomos como relojes en lugar de átomos individuales, explica el físico. También es posible amplificar el efecto, por ejemplo aumentando artificialmente las frecuencias de reloj.

«Actualmente estamos discutiendo esta idea con colegas experimentadores y estamos en contacto con nuestros socios del proyecto», añade Giese. Es muy posible que pronto un equipo decida llevar a cabo este apasionante experimento.

READ  DEWA y ESA se asocian en aplicaciones espaciales para servicios públicos

Referencia: “Una teoría unificada de los tiempos de túneles promovida por los relojes de Ramsey” por Patrik Schach y Enno Giese, 19 de abril de 2024, Los científicos progresan.
DOI: 10.1126/sciadv.adl6078

Continue Reading

Horoscopo

Google lanza Android 15 beta 2.1 con solución de espacio privado

Published

on

Google lanza Android 15 beta 2.1 con solución de espacio privado

Tras la gran actualización de la semana pasada, Google es despliegue Android 15 Beta 2.1 hoy con una solución única para el espacio privado.

AP31.240426.023 con parche de seguridad de mayo de 2024 está disponible para todos los dispositivos compatibles: Pixel 6, Pixel 6 Pro, Pixel 6a, Pixel 7, Pixel 7 Pro, Pixel 7a, Pixel Tablet, Pixel Fold, Pixel 8, Pixel 8 Pro y Pixel 8a .

  • Esta actualización menor de Android 15 Beta 2 soluciona el problema por el cual la creación de un espacio privado en un dispositivo eliminaba los íconos de aplicaciones de la pantalla de inicio (o de las pantallas de inicio si se habían agregado varias pantallas de inicio). (Número 340868295)

Esta pequeña actualización OTA de 11 a 12 MB ya está ampliamente implementada.

Google también proporcionó algunos consejos sobre cómo utilizar el espacio privado, siendo este último particularmente práctico:

  • Si ha ocultado un espacio privado y no recuerda cómo recuperarlo, escriba «Espacio privado» en la barra de búsqueda y toque «Espacio privado: toque para configurar o abrir».
  • Si olvida el factor de desbloqueo del Espacio privado, puede eliminar el Espacio privado desde Configuración > Sistema > Opciones de reinicio > Eliminar espacio privado, utilizando el factor de desbloqueo de su dispositivo.
  • Puedes instalar una versión de Private Space para una aplicación de tu propiedad fuera de Private Space manteniendo presionado el ícono de la aplicación y tocando «Instalar de forma privada».

Todos los dispositivos elegibles registrados en el Programa beta de Android para Pixel Se ofrecerá una actualización inalámbrica (OTA) a la versión beta 2.1.

  • Pixel 8a: imagen de fábrica – OTA
  • Pixel 8 Pro: imagen de fábrica – OTA
  • Píxel 8: imagen de fábrica – OTA
  • Tableta Pixel: imagen de fábrica – OTA
  • Pixel Fold: imagen de fábrica – OTA
  • Pixel 7a: imagen de fábrica – OTA
  • Pixel 7 Pro: imagen de fábrica – OTA
  • Píxel 7: imagen de fábrica – OTA
  • Pixel 6a: imagen de fábrica – OTA
  • Pixel 6 Pro: imagen de fábrica – OTA
  • Píxel 6: imagen de fábrica – OTA

Continue Reading

Horoscopo

Los físicos finalmente confirman la asombrosa predicción de Einstein sobre los agujeros negros: ScienceAlert

Published

on

Los físicos finalmente confirman la asombrosa predicción de Einstein sobre los agujeros negros: ScienceAlert

Los mecanismos detallados de cómo la materia cae sobre un agujero negro desde fuera del horizonte de sucesos se han revelado en un nuevo artículo.

Como predijo la teoría de la gravedad de Einstein, hay un punto en el que la materia deja de girar alrededor del agujero negro y cae hacia abajo, hundiéndose precipitadamente más allá del punto de no retorno.

Hoy, gracias a los datos radiológicos de un agujero negro activo, por fin tenemos pruebas de la existencia de esta «región de inmersión».

«La teoría de Einstein predijo que esta caída final existiría, pero esta es la primera vez que hemos podido demostrar que sucede». dice el físico teórico Andrew Mummery de la Universidad de Oxford en el Reino Unido.

«Piense en ello como un río que se convierte en una cascada: hasta ahora hemos mirado el río. Esta es la primera vez que vemos la cascada».

La materia que se mueve hacia un agujero negro no sigue una línea recta. Da vueltas y vueltas, como agua arremolinándose, girando en espiral, inexorablemente hacia una alcantarilla. No es una comparación inútil: la comparación es tan adecuada que los científicos utilizan vórtices de agua arremolinados para estudiar los entornos alrededor de los agujeros negros.

La Vía Láctea con la ubicación de MAXI J1820+070 marcada por una cruz blanca. Barra lateral: datos de Chandra que muestran el parpadeo de un agujero negro en 2018. (NASA/CXC/Universidad de París/Sr. Espinasse et al./PanSTARRS)

Estudiar los agujeros negros en sí es un poco complicado, porque el espacio-tiempo distorsionado que los rodea es muy extremo.

Pero hace varias décadas, el trabajo teórico de Albert Einstein predijo que a cierta proximidad del agujero negro, la materia ya no podría seguir una órbita circular estable y caería directamente hacia abajo, como el agua sobre el borde del agujero negro. drenaje similar.

READ  SpaceX autorizado para intentar el tercer lanzamiento de Starship el jueves

No hay razón para creer que no sea así (la materia debe cruzar el horizonte de sucesos de una forma u otra, y la teoría de la gravedad de Einstein ha resistido un escrutinio generalizado), pero de lo que los astrofísicos no están seguros es de si Sería capaz de detectarlo.

El trabajo de Mummery y sus colegas tuvo varias partes. Uno de ellos fue el desarrollo de simulaciones numéricas y modelos que describen la región de inmersión para revelar el tipo de luz que emite. Después de eso, necesitaban evidencia observacional que contuviera la misma emisión de la región de inmersión.

El agujero negro en cuestión se encuentra en un sistema a unos 10.000 años luz de distancia llamado MAXI J1820+070. Este sistema contiene un agujero negro de aproximadamente 8,5 veces la masa del Sol y una estrella compañera binaria, cuyo agujero negro elimina material a medida que el par de objetos orbita, alimentándose en ráfagas que se manifiesta como parpadeo de rayos X.

Los astrónomos observaron este agujero negro para comprender mejor su comportamiento, por lo que los investigadores pudieron acceder a datos de muy alta calidad obtenidos mediante rayos X. nustar Y MEJOR Instrumentos en órbita terrestre baja. Se centraron particularmente en una explosión que ocurrió en 2018.

frameborder=»0″allow=»acelerómetro; auto-reproducción; escritura en portapapeles; medios cifrados; giroscopio; imagen en imagen; compartir web» referrerpolicy=»strict-origin-when-cross-origin»allowfullscreen>

Estudios anteriores habían señalado que durante las observaciones de esta explosión se detectó un brillo adicional que realmente no podía explicarse.

A estudio 2020 Se planteó la hipótesis de que este resplandor podría surgir de la región de la órbita circular estable más interna, es decir, la zona de inmersión. Mummery y sus colegas estudiaron este brillo con especial cuidado y descubrieron que coincidía con la emisión que habían obtenido de sus simulaciones.

READ  Horóscopo: los signos que recibirán buenas noticias | Programa diario

Según los investigadores, esto finalmente establece sin lugar a dudas la existencia de la región de inmersión, brindándonos una nueva sonda para el régimen gravitacional extremo en la región inmediatamente fuera del horizonte de sucesos de un agujero negro.

«Lo que es realmente emocionante es que hay muchos agujeros negros en la galaxia, y ahora tenemos una nueva y poderosa técnica para usarlos para estudiar los campos gravitacionales más fuertes conocidos». Mama dice.

“Creemos que esto representa un nuevo e interesante avance en el estudio de los agujeros negros, que nos permitirá estudiar esta última región a su alrededor.

Sólo entonces podremos comprender completamente la fuerza gravitacional. Esta inmersión final del plasma ocurre en el borde mismo de un agujero negro y muestra la materia reaccionando a la gravedad en su forma más fuerte posible. »

La investigación fue publicada en el Avisos mensuales de la Royal Astronomical Society.

Continue Reading

Trending