Connect with us

Horoscopo

Imágenes satelitales de la NASA revelaron algo curioso en el cielo sobre la costa este de Rusia

Published

on

Imágenes satelitales de la NASA revelaron algo curioso en el cielo sobre la costa este de Rusia

Las imágenes satelitales de la NASA obtenidas a fines del año pasado capturaron un extraño fenómeno en el cielo frente a la costa del este de Rusia, coincidiendo con una caída de temperatura «anormalmente baja», informó la agencia en una reciente publicación en línea.

Captadas por el instrumento Espectrorradiómetro de Imágenes de Resolución Moderada (MODIS) en el satélite Terra de la NASA, se podía ver una serie de extrañas líneas paralelas tomando forma en formaciones de nubes justo al este de la isla más grande de Sakhalin, la isla de Rusia que separa el Mar de Okhotsk. en el este y el Mar de Okhotsk. Mar de Japón, situado en el suroeste.

Aproximadamente del tamaño de un autobús escolar, el Tierra Este satélite, lanzado en 1999, estudia el clima de la Tierra a través de los vínculos entre la atmósfera y una serie de características planetarias, incluidas la tierra y el mar. Equipado con cinco instrumentos capaces de medir diferentes características de la Tierra, Terra recopila datos que ayudan a los científicos a evaluar el impacto de la actividad humana en nuestro planeta, así como el impacto de los desastres naturales en los centros de población humana y los ecosistemas.

A través de la lente del ojo de su cámara, el MODIS El instrumento observa cada punto de la Tierra cada 1 o 2 días desde su posición en órbita, registrando lo que observa en 36 bandas espectrales, lo que lo convierte en el más completo de todos los sensores a bordo del satélite Terra y rastrea la mayor variedad de signos vitales en nuestro planeta. . .

READ  El helicóptero Mars comparte la primera foto aérea en color y se prepara para el vuelo del domingo

El 28 de diciembre de 2023, el MODIS de Terra detectó la extraña formación de líneas paralelas de cúmulos sobre el mar de Okhotsk. De apariencia llamativa, estas inusuales estructuras de nubes son un fenómeno bien conocido por los científicos atmosféricos.

Arriba: Calles nubosas visibles en formaciones de cúmulos frente a la costa este de Rusia el 28 de diciembre de 2023 (Crédito: Michala Garrison/NASA Earth Observatory/EOSDIS LANCE/GIBS/Worldview).

Rodillos convectivos horizontales, más comúnmente llamados “calles de nubes«, estas extrañas estructuras toman forma en la troposfera a medida que bolsas de aire frío y seco escapan sobre las cálidas aguas costeras, donde comienzan a adquirir humedad del mar. La condensación de vapor que resulta da lugar a la formación de nubes, mientras que las más frías partes del disipador de aire circundante.

La atmósfera sobre la costa este de Rusia es ideal para la formación de formaciones como estas, que generalmente aparecen en la misma dirección que el viento predominante. Sobre el mar de Okhotsk, los vientos excepcionalmente fríos del noroeste de Siberia han sido comparados con un «fábrica» formación de hielo y nubes, donde las temperaturas en la isla Sakhalin en esta época del año a menudo bajan a -6 grados Fahrenheit (-21 grados Celsius).

En fotografías disponibles en la página del Observatorio de la Tierra de la NASA, las condiciones estratosféricas en el Ártico produjeron nubes con una sorprendente coloración iridiscente.

«Estas etéreas nubes estratosféricas polares se desarrollan en condiciones extremadamente frías y recientemente han sido visibles para observadores en latitudes más bajas de lo habitual», escribió Lindsey Doermann. en una entrada en el sitio web del Observatorio de la Tierra describiendo el fenómeno en imágenes de satélite de la NASA.

Imágenes de satélite de la NASA
Los datos recopilados por la Oficina de Asimilación y Modelado Global (GMAO) de la NASA revelaron lo que describió como bajas temperaturas «anormales» que coincidieron con la aparición de rastros de nubes sobre la costa este de Rusia en las últimas semanas ( Crédito: P. Newman (NASA), L. Lait ( SSAI), S. Pawson (NASA)).

Cuando las calles de nubes aparecieron frente a la costa rusa, las temperaturas estratosféricas del Ártico habían caído extremadamente bajas (ver arriba), según los modelos de datos producidos por la Oficina Mundial de Modelado y Asimilación (GMAO), agencia espacial.

En apoyo de la misión de Ciencias de la Tierra de la NASA, CMMS proporciona servicios de modelado y asimilación de datos para ayudar a fortalecer la información obtenida de las imágenes satelitales de la NASA y para proporcionar análisis y pronósticos adicionales sobre los eventos que se producen en la atmósfera, así como en la tierra y en los océanos.

Información adicional sobre la formación de calles de nubes. se puede encontrar aquíy puede encontrar más información sobre la Oficina de Asimilación y Modelado Global de la NASA en Sitio de investigación CMMS.

Micah Hanks es el editor en jefe y cofundador de The Debrief. Se le puede contactar por correo electrónico a [email protected]. Sigue su trabajo en micahhanks.com y en X: @MicaHanks.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

¿Qué causa los diferentes colores de las auroras? Un experto explica el arcoíris eléctrico

Published

on

¿Qué causa los diferentes colores de las auroras?  Un experto explica el arcoíris eléctrico

La semana pasada, una erupción solar masiva envió una ola de partículas energéticas del Sol al espacio. Durante el fin de semana, la ola llegó a la Tierra y personas de todo el mundo pudieron ver auroras inusualmente vívidas en ambos hemisferios.

Aunque la aurora normalmente sólo es visible cerca de los polos, fue vista este fin de semana. tan al sur como Hawaii en el hemisferio norte y tan al norte como Mackay En el sur.

Este espectacular pico de actividad auroral parece haber terminado, pero no te preocupes si te lo perdiste. El Sol se acerca a su punto máximo Ciclo de manchas solares de 11 añosy se espera que regresen períodos de intensa aurora durante el próximo año.

Si viste la aurora o alguna de las fotos, quizás te preguntes qué estaba pasando exactamente. ¿Qué hace que el brillo y los diferentes colores? La respuesta está en los átomos, en cómo se excitan y cómo se relajan.

Cuando los electrones se encuentran con la atmósfera.

Las auroras son causadas por partículas subatómicas cargadas (principalmente electrones) que chocan contra la atmósfera terrestre. Estos son emitidos por el Sol constantemente, pero son más numerosos durante los periodos de mayor actividad solar.

La mayor parte de nuestra atmósfera está protegida de la entrada de partículas cargadas por el campo magnético de la Tierra. Pero cerca de los polos, pueden colarse y causar estragos.

La atmósfera terrestre contiene aproximadamente un 20% de oxígeno y un 80% de nitrógeno, con algunas trazas de otros elementos como agua, dióxido de carbono (0,04%) y argón.

La aurora de mayo de 2024 también fue visible en la región de Emilia-Romaña en el norte de Italia.
Luca Argalia/Flickr, CC BY-NC-SA

Cuando los electrones de alta velocidad chocan con moléculas de oxígeno en la atmósfera superior, dividen las moléculas de oxígeno (O₂) en átomos individuales. La luz ultravioleta del Sol también hace esto, y los átomos de oxígeno generados pueden reaccionar con las moléculas de O₂ para producir ozono (O₃), la molécula que nos protege de los dañinos rayos UV.

READ  El telescopio Géminis captura una rara 'mariposa cósmica' flotando en el espacio

Pero en el caso de la aurora boreal, los átomos de oxígeno generados están en un estado excitado. Esto significa que los electrones de los átomos están dispuestos de forma inestable y pueden “relajarse” liberando energía en forma de luz.

¿Qué da luz verde?

Como se ve en los fuegos artificiales, los átomos de diferentes elementos producen diferentes colores de luz cuando se les activa.

Los átomos de cobre dan luz azul, el bario es verde y los átomos de sodio producen un color amarillo anaranjado que quizás también hayas visto en las antiguas farolas de la calle. Estas emisiones están «permitidas» por las reglas de la mecánica cuántica, lo que significa que ocurren muy rápidamente.

Cuando un átomo de sodio está en estado excitado, sólo permanece allí durante unas 17 milmillonésimas de segundo antes de emitir un fotón de color amarillo anaranjado.

Pero, en la aurora boreal, muchos átomos de oxígeno se crean en estados excitados sin ninguna forma «permitida» de relajarse emitiendo luz. Sin embargo, la naturaleza encuentra un camino.

Un cielo nocturno moteado con luces verdes brillantes y rayas rosadas sobre ellas.
Aurora australis visible desde Oatlands, Tasmania, el 11 de mayo de 2024.
Imagen AAP/Ethan James

La luz verde que domina la aurora es emitida por átomos de oxígeno que se relajan desde un estado llamado “¹S” a un estado llamado “¹D”. Este es un proceso relativamente lento, que toma en promedio casi un segundo completo.

De hecho, esta transición es tan lenta que generalmente no ocurrirá con el tipo de presión atmosférica que vemos a nivel del suelo, porque el átomo excitado habrá perdido energía al chocar con otro átomo antes de que tenga la oportunidad de enviar un bonito mensaje verde. fotón. Pero en las capas superiores de la atmósfera, donde la presión atmosférica es menor y por tanto hay menos moléculas de oxígeno, tienen más tiempo antes de chocar y por tanto tienen posibilidades de liberar un fotón.

READ  El concepto de propulsión radical de la NASA podría llegar al espacio interestelar en menos de 5 años

Por esta razón, los científicos tardaron mucho en comprender que la luz verde de las auroras provenía de átomos de oxígeno. El brillo amarillo anaranjado del sodio se conoció en la década de 1860, pero no fue hasta la década de 1920 que científicos canadienses Entendí que el verde de la aurora se debía al oxígeno.

¿Qué hace la luz roja?

La luz verde proviene de la llamada transición «prohibida», que ocurre cuando un electrón en el átomo de oxígeno realiza un salto improbable de un patrón orbital a otro. (Las transiciones prohibidas son mucho menos probables que las permitidas, lo que significa que tardan más en ocurrir).

Sin embargo, incluso después de emitir este fotón verde, el átomo de oxígeno se encuentra en otro estado excitado sin posibilidad de relajación. La única salida es a través de otra transición prohibida, del estado ¹D al estado ³P, que emite una luz roja.

Esta transición está además prohibida, por así decirlo, y el estado ¹D debe sobrevivir durante unos dos minutos antes de que finalmente pueda romper las reglas y emitir una luz roja. Debido al tiempo necesario, la luz roja sólo aparece a grandes altitudes, donde las colisiones con otros átomos y moléculas son raras.

Además, debido a que hay muy poco oxígeno allí arriba, la luz roja tiende a aparecer sólo durante auroras intensas, como las que acabamos de tener.

Por eso la luz roja aparece encima de la verde. Aunque ambas surgen de relajaciones prohibidas de los átomos de oxígeno, la luz roja se emite mucho más lentamente y es más probable que se apague por colisiones con otros átomos en altitudes más bajas.

READ  La tripulación de la estación espacial se encarga de las actualizaciones científicas y técnicas, las observaciones terrestres y los entrenamientos.

Otros colores y por qué las cámaras los ven mejor

Aunque el verde es el color más común en las auroras boreales y el rojo es el segundo color más común, también hay otros colores. En particular, las moléculas de nitrógeno ionizado (N₂⁺, a las que les falta un electrón y tienen una carga eléctrica positiva) pueden emitir luz azul y roja. Esto puede producir un tinte magenta en altitudes bajas.

Todos estos colores son visibles a simple vista si la aurora es lo suficientemente brillante. Sin embargo, aparecen con más intensidad en el objetivo de la cámara.

Hay dos razones para esto. En primer lugar, las cámaras se benefician de una exposición prolongada, lo que significa que pueden dedicar más tiempo a recoger luz para producir una imagen que nuestros ojos. Como resultado, pueden tomar una imagen en condiciones más oscuras.

La segunda es que los sensores de color de nuestros ojos no funcionan muy bien en la oscuridad, por lo que tendemos a ver en blanco y negro en condiciones de poca luz. Las cámaras no tienen esta limitación.

Pero no te preocupes. Cuando la aurora es lo suficientemente brillante, los colores son claramente visibles a simple vista.



Leer más: ¿Qué son las auroras boreales y por qué vienen en diferentes formas y colores? Dos expertos explican


Continue Reading

Horoscopo

SpaceX alcanza los 6.000 satélites Starlink en órbita tras el lanzamiento del Falcon 9 desde Cabo Cañaveral – Spaceflight Now

Published

on

SpaceX alcanza los 6.000 satélites Starlink en órbita tras el lanzamiento del Falcon 9 desde Cabo Cañaveral – Spaceflight Now
Un cohete Falcon 9 atraviesa el cielo nocturno sobre Florida mientras despega para la misión Starlink 6-58 el 12 de mayo de 2024. Imagen: Adam Bernstein/Spaceflight Now

SpaceX lanzó un lote de 23 satélites Starlink en su cohete Falcon 9 desde la estación espacial de Cabo Cañaveral. La misión eleva el número total de satélites Starlink a 6.000 satélites en órbita. de acuerdo a según cifras publicadas el domingo por el astrónomo y experto en seguimiento orbital Jonathan McDowell.

El despegue de la misión Starlink 6-58 desde el Complejo de Lanzamiento Espacial 40 tuvo lugar a las 8:53 p.m.EDT (00:53 UTC). Este fue el lanzamiento número 34 de Starlink dedicado de SpaceX en 2024.

El propulsor de primera etapa Falcon 9 que respalda esta misión, el B1073 de la flota SpaceX, completó su decimoquinto vuelo. Entre sus misiones anteriores, B1073 lanzó el módulo de aterrizaje lunar HAKUTO-R de ispace, la misión número 27 de Servicios de Reabastecimiento Comercial (CRS-27) de SpaceX y el vuelo compartido Bandwagon-1.

Poco más de ocho minutos después del despegue, B1073 aterrizó en el dron SpaceX, “A Shortfall of Gravitas”. Este fue el aterrizaje de refuerzo número 69 para ASOG y el aterrizaje de refuerzo número 307 para SpaceX hasta la fecha.

SpaceX lanza su cohete Falcon 9 en la misión Starlink 6-58 el 12 de mayo de 2024. Imagen: Michael Cain/Spaceflight Now

La misión tuvo lugar durante un fin de semana de actividad solar histórica que trajo auroras hasta el sur de Florida. El viernes, la Administración Nacional Oceánica y Atmosférica (NOAA) señaló que las sondas de la NOAA habían observado al menos cinco eyecciones de masa coronal. Centro de predicción del clima espacial en este punto.

El domingo por la mañana, el SWPC dijo que una «vigilancia G4 o superior» seguía vigente para el 12 de mayo, señalando que «es posible que vuelvan a ocurrir tormentas geomagnéticas de severas a extremas más tarde hoy».

READ  El helicóptero Mars comparte la primera foto aérea en color y se prepara para el vuelo del domingo

En una publicación en su sitio de redes sociales X (anteriormente Twitter), Elon Musk dijo que SpaceX está monitoreando de cerca el impacto de las tormentas solares en la constelación Starlink.

Vuelo de la nave espacial 4

La actividad de lanzamiento en Florida también se produce cuando SpaceX se acerca a la cuarta prueba de vuelo integrada de su cohete Starship en el sur de Texas. El Super Heavy Booster (Booster 11) se encuentra actualmente en el Orbital Launch Rack (OLM) y la etapa superior del Barco 29 se preparó para su apilamiento el domingo por la tarde.

Musk dijo en otra publicación que esperaba que IFT-4 estuviera «probablemente dentro de tres a cinco semanas», lo que situaría la misión en la primera quincena de junio.

Mientras la compañía espera la aprobación de la Administración Federal de Aviación (FAA) para el próximo lanzamiento de Starship, la FAA también publicó información que indica que llevará a cabo una evaluación ambiental con respecto a los lanzamientos de Starship en el Complejo de Lanzamiento 39A (LC -39A) del Centro Espacial Kennedy de la NASA.

Están previstas dos reuniones de análisis de alcance en persona para el 12 y 13 de junio en Cabo Cañaveral y Merritt Island, respectivamente, para permitir que el público brinde comentarios sobre la propuesta. Está prevista una reunión virtual para el 17 de junio.

READ  Empieza el mes con nuevas premoniciones de Josie Diez Canseco

Si bien se completó una evaluación ambiental final para Starship en septiembre de 2019, la FAA declaró que «SpaceX no ha presentado una solicitud para una licencia de operador de vehículos para operaciones de lanzamiento de Starship-Super Heavy al LC-39A después de completar la EA de 2019; por lo tanto, la FAA no ha tomado medidas federales para adoptar el EA/FONSI de la NASA (hallazgo sin impacto significativo).

La agencia dijo que SpaceX ahora proponer nueva infraestructura de lanzamiento que no formó parte de EA 2019 y apunta a realizar hasta 44 lanzamientos por año. SpaceX también realizaría aterrizajes de propulsores Super Heavy y Starship en el LC-39A o drones para misiones reutilizables o los desecharía en el océano para misiones prescindibles.

Continue Reading

Horoscopo

Los físicos detectan pistas de una misteriosa partícula llamada 'gooball': ScienceAlert

Published

on

Los físicos detectan pistas de una misteriosa partícula llamada 'gooball': ScienceAlert

Los científicos llevan mucho tiempo buscando “gooballs”, que son estados ligados del mundo subatómico. gluón partículas solas, sin ningún quarks implícito. Ahora puede que acabemos de encontrarlos, escondidos en un experimento con un acelerador de partículas.

Esto promete ser un avance extremadamente significativo en física, pero para beneficio de todos los que no tienen un doctorado en este campo, comenzaremos por el principio. La función principal de los gluones es mantener los quarks en su lugar y mantener estables los átomos; los quarks son los componentes básicos de los protones y neutrones.

Este papel hace que el gluón forme parte de la fuerza nuclear fuerte, una de las cuatro fuerzas fundamentales de la naturaleza que mantienen unidas las leyes de la física, junto con la gravedad, el electromagnetismo y la fuerza nuclear débil.

El colisionador electrón-positrón Beijing II. (Academia china de ciencias)

Espero que sigas con nosotros hasta ahora. Hasta ahora, las bolas de pegamento han sido sólo proposiciones teóricas que los físicos creen que deberían existir (porque los gluones deberían poder adherirse entre sí) y no algo que realmente se haya observado.

Los gluones individuales no contienen materia, simplemente transportan fuerza, pero las bolas de pegamento tienen una masa creada por las interacciones de los gluones. Si podemos detectarlos, será otra indicación de que nuestra comprensión actual de cómo funciona el Universo, también conocida como Modelo estándar de física de partículasDe hecho tiene razón.

Y así las experiencias en Colisionador de electrones y positrones II de Beijing en China. El colisionador se utilizó para aplastar mesones, que son partículas formadas por un quark y un antiquark unidas por la poderosa fuerza nuclear.

READ  Voyager's Space Micro anuncia controles de vuelo para la plataforma de aviónica ProtonVPX-Box™VPX-BoxPR 2

Al examinar los desechos subatómicos de estas sesiones de trituración de partículas (y estamos hablando de una década de datos que involucran unos 10 mil millones de muestras), los investigadores pudieron ver evidencia de partículas con una masa promedio de 2.395 MeV/c.2. Esta es la masa que deben tener las bolas de pegamento.

La partícula en cuestión se llama X(2370), y aunque algunos de los otros cálculos involucrados no son exactamente lo que buscaban los investigadores, no están muy lejos. Se necesitarán más mediciones y observaciones para obtener una respuesta definitiva.

Así que esto todavía no es prueba de la existencia de bolas gooball, pero la evidencia está empezando a acumularse. En 2015, los científicos también creyeron haber visto bolas gooball. En poco tiempo, otra partícula podría pasar de lo teórico a lo real.

Gran parte de esta investigación científica es posible gracias a los continuos avances en técnicas matemáticas y capacidades informáticas, necesarias para calcular la gran cantidad de posibles interacciones y desarrollos únicos que podrían surgir de una bola de sustancia viscosa.

Además, por supuesto, ahora tenemos el equipo y los instrumentos para observar el funcionamiento más fundamental del mundo natural y producir los miles de millones de estados de partículas necesarios para detectar algo tan raro y exótico como una bola de pegamento.

La investigación fue publicada en Cartas de examen físico.

Continue Reading

Trending