Connect with us

Horoscopo

Los científicos desarrollan un material increíblemente ligero, 4 veces más resistente que el acero

Published

on

Los científicos desarrollan un material increíblemente ligero, 4 veces más resistente que el acero

Los investigadores crearon un nuevo material recubriendo el ADN con una forma pura de vidrio, lo que dio como resultado una sustancia más ligera y resistente que el acero. Este descubrimiento revolucionario, que utiliza la estructuración del vidrio a nanoescala y las propiedades únicas del ADN, ofrece potencial para diversas aplicaciones en ingeniería y defensa. (Concepto del artista)

Los investigadores han desarrollado un material ligero pero resistente combinando dos ingredientes inesperados: ADN y vidrio.

Trabajar en en la nanoescala proporciona a los científicos una comprensión profunda y precisión en la fabricación y el análisis de materiales. En la producción a gran escala, e incluso en entornos naturales, muchos materiales son susceptibles a defectos y contaminantes que podrían comprometer su compleja arquitectura. Estas vulnerabilidades pueden provocar que se fracturen bajo presión. Esto es particularmente evidente en la mayoría de los tipos de vidrio, lo que le otorga la reputación de ser un material frágil.

Científicos de la Universidad de Columbia, la Universidad de Connecticut y el Laboratorio Nacional Brookhaven del Departamento de Energía de EE. UU. (DOE) han fabricado con éxito una forma pura de vidrio y han recubierto piezas especializadas con él. ADN con esto para crear un material que no sólo era más fuerte que el acero, sino también increíblemente liviano. Los materiales con ambas cualidades son raros y una mayor investigación podría conducir a nuevas aplicaciones en ingeniería y defensa. Los resultados fueron publicados en la revista. Estetodos A.informes ciencias fisicas.

ADN: los componentes básicos de la vida y mucho más

En los seres vivos, desoxirribonucleico. ácido, más comúnmente conocido como ADN, contiene información biológica que indica a las células de los organismos cómo formarse, crecer y reproducirse. El material del que está hecho el ADN se conoce como polímero, una clase de materiales fuertes y elásticos que incluye el plástico y el caucho. Su resistencia y simplicidad han intrigado a los científicos de materiales e inspirado muchos experimentos interesantes. Oleg Gang, científico de materiales en el Centro de Nanomateriales Funcionales (CFN), una instalación para usuarios de la Oficina de Ciencias del DOE en Brookhaven Lab, y profesor de Universidad de Colombia, lleva años explotando las propiedades únicas del ADN para la síntesis de materiales, lo que ha dado lugar a numerosos descubrimientos. Esta nueva tecnología ha inspirado una variedad de aplicaciones innovadoras, desde la administración de medicamentos hasta la electrónica.

Oleg Gang y Aaron Michelson

Oleg Gang, en la foto de atrás, y Aaron Michelson utilizan los recursos especializados de CFN para medir la sorprendente resistencia de esta nueva estructura material. Crédito: Laboratorio Nacional de Brookhaven

Gang había trabajado previamente con el autor principal del artículo, Aaron Michelson, investigador postdoctoral en Brookhaven, en un experimento que utiliza estructuras de ADN para construir un marco sólido para nuevos materiales. Las moléculas de ADN se comportan de una manera interesante. Los nucleótidos individuales, las unidades básicas de los ácidos nucleicos como el ADN y ARN, dictan la conexión entre secuencias complementarias. La forma precisa en que se unen entre sí permite a los científicos desarrollar métodos para doblar el ADN en formas específicas llamadas «origami», que llevan el nombre del arte japonés de doblar papel. Estas formas de ADN son bloques de construcción a nanoescala que se pueden programar mediante enlaces de ADN direccionables para «autoensamblar.” Esto significa que se pueden formar espontáneamente estructuras bien definidas con un patrón repetitivo a partir de estos bloques de ADN de origami.

Luego, estos bloques se unen entre sí para formar una red más grande, una estructura con un patrón repetido. Este proceso permite a los científicos construir nanomateriales ordenados en 3D a partir de ADN e integrar nanopartículas y proteínas inorgánicas, como han demostrado estudios anteriores del grupo. Habiendo adquirido comprensión y control de este proceso de ensamblaje único, Gang, Michelson y su equipo pudieron explorar lo que se podría lograr cuando se utilizara este andamio biomolecular para crear estructuras de sílice que preservaran la arquitectura del andamio.

«Nos centramos en utilizar el ADN como un nanomaterial programable para formar un andamio 3D complejo», dijo Michelson, «y queríamos explorar cómo este andamio se comportaría mecánicamente cuando se transfiriera a materiales sólidos más estables. Investigamos la posibilidad de fundir este andamio auto- Material de ensamblaje en sílice, principal ingrediente del vidrio, y su potencial.

El trabajo de Michelson en esta área le valió el premio Robert Simon Memorial de la Universidad de Columbia. Su investigación sobre las estructuras del ADN ha explorado una variedad de características y aplicaciones, desde propiedades mecánicas hasta la superconductividad. Al igual que las estructuras sobre las que se construyó, el trabajo de Michelson continúa creciendo y desarrollándose a medida que incorpora nuevas capas de información de estos apasionantes experimentos.

JEOL 1400 TEM y Hitachi 4800 SEM

Una mirada microscópica a cómo estas hebras de ADN forman formas incrustadas dentro de estructuras de red más grandes recubiertas de sílice. CFN, JEOL-1400 TEM y Hitachi-4800 SEM. Crédito: Laboratorio Nacional de Brookhaven

La siguiente parte del proceso de fabricación se inspiró en la biomineralización, la forma en que ciertos tejidos vivos producen minerales para volverse más duros, como los huesos.

«Estábamos muy interesados ​​en cómo podemos mejorar las propiedades mecánicas de materiales ordinarios, como el vidrio, mientras los estructuramos a nanoescala», dijo Gang.

Los científicos utilizaron una capa muy fina de vidrio de sílice, de sólo unos 5 nm de espesor, o unos pocos cientos de átomos, para cubrir los marcos de ADN, dejando los espacios interiores abiertos y garantizando que el material resultante sea ultraligero. A esta pequeña escala, el vidrio es inmune a los defectos y proporciona una resistencia que no se encuentra en piezas grandes de vidrio donde se desarrollan grietas que hacen que se rompa. Sin embargo, el equipo quería saber exactamente qué tan fuerte era este material, lo que, a esta escala, requería equipo muy especializado.

Fuerza bajo presión

Hay formas sencillas de comprobar si algo es sólido. Hurgar, empujar e inclinarse sobre las superficies y observar su comportamiento a menudo puede proporcionar información útil. ¿Se doblan, chirrían, se deforman o se aprietan bajo presión? Esta es una forma sencilla pero eficaz de comprender la fuerza de un objeto, incluso sin herramientas para medirla con precisión. Pero, ¿cómo se puede presionar un objeto que es demasiado pequeño para verlo?

«Para medir la fuerza de estas pequeñas estructuras, utilizamos una técnica llamada nanoindentación», explicó Michelson. “La nanoindentación es una prueba mecánica a muy pequeña escala que se realiza utilizando un instrumento preciso capaz de aplicar y medir fuerzas resistivas. Nuestras muestras tienen sólo unas pocas micras de espesor, aproximadamente una milésima de milímetro, por lo que es imposible medir estos materiales por medios convencionales. Usando juntos un microscopio electrónico y nanoindentación, podemos medir simultáneamente el comportamiento mecánico y observar el proceso de compresión.

Un gráfico que compara la nanored de este experimento con la resistencia relativa de varios materiales.

Un gráfico que compara la nanored de este experimento con la resistencia relativa de varios materiales. Crédito: Laboratorio Nacional de Brookhaven

A medida que el pequeño dispositivo comprime o indenta la muestra, los investigadores pueden tomar medidas y observar las propiedades mecánicas. Luego pueden ver qué sucede con el material cuando se libera la compresión y la muestra vuelve a su estado original. Si se forman grietas o la estructura falla en algún punto, se pueden registrar estos valiosos datos.

Cuando se probó, se descubrió que la red de ADN recubierta de vidrio era cuatro veces más fuerte que el acero. Lo que fue aún más interesante fue que su densidad era aproximadamente cinco veces menor. Aunque existen materiales que son resistentes y se consideran bastante ligeros, nunca se había conseguido tanto.

Sin embargo, esta técnica no siempre estuvo disponible en el CFN.

«Colaboramos con Seok-Woo Lee, profesor asociado de la Universidad de Connecticut, que tiene experiencia en las propiedades mecánicas de los materiales», dijo Gang. “Era un usuario de CFN que aprovechó algunas de nuestras capacidades y recursos, como los microscopios electrónicos, y así es como desarrollamos una relación con él. Inicialmente no teníamos la capacidad de nanoindentación, pero él nos guió hacia las herramientas adecuadas y nos encaminó por el camino correcto. Este es otro ejemplo de cómo los científicos del mundo académico y los laboratorios nacionales se benefician de la colaboración. Ahora contamos con estas herramientas y la experiencia para llevar estudios como este aún más lejos.

Construye algo nuevo y emocionante

Même s’il reste encore beaucoup de travail à faire avant de passer à l’échelle et de réfléchir à la myriade d’applications d’un tel matériau, les scientifiques des matériaux ont encore des raisons d’être enthousiasmés par ce que cela signifie para el futuro. El equipo planea estudiar otros materiales, como la cerámica de carburo, que es incluso más resistente que el vidrio, para ver cómo funcionan y se comportan. Esto podría dar lugar a materiales ligeros aún más resistentes en el futuro.

Aunque su carrera aún se encuentra en sus primeras etapas, Michelson ya ha logrado mucho y está ansioso por pasar a las siguientes fases de su investigación.

«Es una maravillosa oportunidad ser un postdoctorado en Brookhaven Lab, especialmente después de ser estudiante en la Universidad de Columbia y trabajar en CFN con bastante frecuencia», recuerda Michelson. “Eso es lo que me llevó a realizar un posdoctorado allí. Las capacidades que tenemos en CFN, particularmente en imágenes, realmente han ayudado a impulsar mi trabajo.

Referencia: “Sílice de nanoarquitectura liviana y de alta resistencia” por Aaron Michelson, Tyler J. Flanagan, Seok-Woo Lee y Oleg Gang, 27 de junio de 2023. Informes celulares Ciencia física.
DOI: 10.1016/j.xcrp.2023.101475

READ  Gran criatura “críptica” encontrada escondida debajo de un puente en Ecuador. es una nueva especie

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

Los átomos se han acercado más que nunca, revelando efectos cuánticos aparentemente imposibles

Published

on

Los átomos se han acercado más que nunca, revelando efectos cuánticos aparentemente imposibles

Los científicos han roto dos capas de átomos magnéticos ultrafríos a una distancia de 50 nanómetros entre sí (diez veces más cerca que en experimentos anteriores), revelando extraños efectos cuánticos nunca antes vistos.

La extrema proximidad de estos átomos permitirá a los investigadores estudiar por primera vez las interacciones cuánticas a esta escala de longitud y podría conducir a importantes avances en el desarrollo de superconductores y computadoras cuánticasinformaron los científicos en un nuevo estudio publicado el 2 de mayo en la revista Ciencia.

Continue Reading

Horoscopo

La misteriosa luna de Júpiter, Amaltea, ha sido vista pasando por la Gran Mancha Roja (foto)

Published

on

La misteriosa luna de Júpiter, Amaltea, ha sido vista pasando por la Gran Mancha Roja (foto)

La nave espacial Juno de la NASA ha detectado la elusiva quinta luna de Júpiter transitando por la Gran Mancha Roja del planeta gigante, brindando a los astrónomos una vista poco común de este pequeño pero intrigante satélite natural.

JúpiterLas lunas más famosas de la astronáutica son sus cuatro satélites galileanos: yo, Europa, Ganímedes Y Calisto, cada uno de los cuales tiene varios miles de kilómetros de ancho. La quinta luna de Júpiter descubierta, y la quinta más grande de las 95 lunas conocidas del planeta, es Amaltea. Fue descubierto en 1892 por Edward Emerson Barnard, un astrónomo estadounidense que fue un destacado observador visual. También descubrió la estrella de Barnard, así como una gran cantidad de objetos oscuros. nebulosas.

Continue Reading

Horoscopo

Mapa cerebral en 3D de 1.400 terabytes de gran detalle

Published

on

Mapa cerebral en 3D de 1.400 terabytes de gran detalle

Por

Seis capas de neuronas excitadoras codificadas por colores según su profundidad. Crédito: Google Research y Lichtman Lab

Un esfuerzo de colaboración entre Harvard y Google ha dado lugar a un gran avance en la ciencia del cerebro, al producir un mapa 3D completo de un pequeño segmento del cerebro humano, revelando interacciones neuronales complejas y sentando las bases para mapear un cerebro de ratón completo.

Un milímetro cúbico de tejido cerebral puede no parecer mucho. Pero considerando que este pequeño cuadrado contiene 57.000 células, 230 milímetros de vasos sanguíneos y 150 millones de sinapsis, lo que representa 1.400 terabytes de datos, los investigadores de Harvard y Google acaban de lograr algo enorme.

Un equipo de Harvard dirigido por Jeff Lichtman, profesor Jeremy R. Knowles de biología molecular y celular y recién nombrado decano de ciencia, co-creó con investigadores de Google la reconstrucción 3D con resolución sináptica más grande de un fragmento de cerebro humano hasta el día de hoy. mostrando con gran detalle cada célula y su red de conexiones neuronales en una porción de la corteza temporal humana de aproximadamente la mitad del tamaño de un grano de arroz.

Avances tecnológicos en neurociencia

La impresionante hazaña, publicada en la revista Ciencia, es el último de una colaboración de casi 10 años con científicos de Google Research, que combinan imágenes de microscopía electrónica de Lichtman con algoritmos de inteligencia artificial para codificar por colores y reconstruir el cableado extremadamente complejo del cerebro de los mamíferos. Los tres primeros coautores del artículo son Alexander Shapson-Coe, ex investigador postdoctoral en Harvard; Michał Januszewski de Google Research y Daniel Berger, investigador postdoctoral en Harvard.

READ  Gran criatura “críptica” encontrada escondida debajo de un puente en Ecuador. es una nueva especie

El objetivo final de la colaboración, apoyada por la Iniciativa BRAIN de los Institutos Nacionales de SaludImplica crear un mapa de alta resolución del cableado neuronal completo del cerebro de un ratón, lo que implicaría aproximadamente 1.000 veces la cantidad de datos que acaban de producir a partir del fragmento de 1 milímetro cúbico de la corteza humana.

Información del último mapa cerebral

«La palabra 'fragmento' es irónica», dijo Lichtman. “Un terabyte es, para la mayoría de la gente, gigantesco, pero un trozo de cerebro humano –sólo un pequeño trozo de cerebro humano– sigue siendo miles de terabytes”.

El último mapa publicado en Science contiene detalles nunca antes vistos sobre la estructura del cerebro, incluido un raro pero poderoso conjunto de axones conectados por hasta 50 sinapsis. El equipo también notó rarezas en el tejido, como una pequeña cantidad de axones que forman grandes verticilos. Dado que su muestra fue tomada de un paciente epiléptico, no saben si estas formaciones inusuales son patológicas o simplemente raras.

El campo de la conectividad

El campo de Lichtman es la «conectómica», que, de forma análoga a la genómica, busca crear catálogos completos de la estructura del cerebro, hasta las células individuales y el cableado. Estos mapas completos abrirían el camino a nuevos conocimientos sobre las funciones y enfermedades del cerebro, sobre las que los científicos todavía saben muy poco.

Los algoritmos de inteligencia artificial de última generación de Google permiten la reconstrucción y el mapeo del tejido cerebral en tres dimensiones. El equipo también desarrolló un conjunto de herramientas disponibles públicamente que los investigadores pueden utilizar para examinar y anotar el conectoma.

READ  Las estrellas explotan en galaxias polvorientas, simplemente no siempre podemos verlas

Direcciones futuras

«Dada la enorme inversión que se hizo en este proyecto, era importante presentar los resultados de una manera que ahora todos puedan beneficiarse de ellos», dijo Viren Jain, colaborador de Google Research.

Luego, el equipo abordará la formación del hipocampo del ratón, importante para la neurociencia debido a su papel en la memoria y las enfermedades neurológicas.

Referencia: “Un fragmento de petavoxel de la corteza cerebral humana reconstruido en la nanoescala resolución » por Alexander Shapson-Coe, Michał Januszewski, Daniel R. Berger, Art Pope, Yuelong Wu, Tim Blakely, Richard L. Schalek, Peter H. Li, Shuohong Wang, Jeremy Maitin-Shepard, Neha Karlupia, Sven Dorkenwald, Evelina Sjostedt, Laramie Leavitt, Dongil Lee, Jakob Troidl, Forrest Collman, Luke Bailey, Angerica Fitzmaurice, Rohin Kar, Benjamin Field, Hank Wu, Julian Wagner-Carena, David Aley, Joanna Lau, Zudi Lin, Donglai Wei, Hanspeter Pfister, Adi Peleg, Viren Jain y Jeff W. Lichtman, 10 de mayo de 2024, Ciencia.
DOI: 10.1126/ciencia.adk4858

Continue Reading

Trending