Connect with us

Horoscopo

La experiencia espacial comienza con una explosión en la escuela High Plains de Loveland – Loveland Reporter-Herald

Published

on

La experiencia espacial comienza con una explosión en la escuela High Plains de Loveland – Loveland Reporter-Herald

Los alumnos de la Escuela High Plains rodean una sandía y una manzana salpicadas en el suelo el viernes después de que su maestro de ciencias y un bombero de la Autoridad de Rescate de Bomberos de Loveland arrojaron la fruta desde la escalera del camión de bomberos a 102 pies en el aire sobre la escuela en Loveland. El experimento fue diseñado para mostrar a los estudiantes los efectos de la gravedad sobre objetos de diferentes tamaños. (Jenny Sparks/Loveland Reporter-Herald)

La escuela de High Plains inició con estilo un experimento de nueve semanas el viernes por la mañana, trayendo a la Autoridad de Rescate y Bomberos de Loveland para demostrar la gravedad a 102 pies.

Un camión de bomberos levantó al profesor de ciencias Pete Carlson en el aire frente a todo el alumnado para demostrar los efectos de la gravedad: dejó caer una sandía y una manzana sobre el cemento de debajo.

Peter Carlson, profesor de ciencias de la Escuela High Plains, a la izquierda, anima a los estudiantes mientras se sube a un camión con escalera de la Autoridad de Rescate de Bomberos de Loveland para dejar una sandía, una manzana y botellas de líquido para un científico experimental con la ayuda del bombero Steve Irons el viernes. Afuera de la escuela. (Jenny Sparks/Loveland Reporter-Herald)

El inicio premia un experimento que incluirá a todos los estudiantes de secundaria de High Plains, divididos en equipos de cuatro o cinco, con un equipo seleccionado para enviar su experimento a la Estación Espacial Internacional. Se diseñarán experimentos para probar los efectos de la microgravedad en cualquier tema que el estudiante desee, como por ejemplo cómo crece una planta sin la gravedad de la Tierra.

«Lo que más me gustó probablemente fue la explosión de la sandía», dijo Bennett Heckman, un estudiante de sexto grado en High Plains. Blande un trozo de cáscara de sandía. “¡Este me tocó el pie! »

La sandía, si bien era un buen espectáculo para los estudiantes, también tenía como objetivo demostrar los efectos de la gravedad sobre los objetos. Está inspirado en un ahora famoso experimento realizado por el astrónomo italiano Galileo Galilei, que demostró que la gravedad afecta a todos los objetos por igual, independientemente de su masa.

READ  Un nuevo descubrimiento transforma nuestra comprensión de los cristales

Además, una botella llena de agua de color rojo cayó desde lo alto, lo que demuestra que el líquido, al caer al mismo ritmo que la botella, permanecería dentro de la botella en lugar de caer.

«Fue genial poder traer al Departamento de Bomberos de Loveland», dijo Carlson. “Dios mío, el mejor día de mi vida, tuve que viajar en un camión de bomberos. Pero el solo hecho de que los niños puedan presenciar algo más que simplemente dejarlo en un edificio de dos pisos les da un poco más de emoción para llevarse a casa.

La estructura del proyecto, conocido como proyecto de «aprendizaje basado en problemas», según Lindy Jones, coordinadora de aprendizaje basado en proyectos de High Plains, se asemeja a propuestas científicas reales.

«Es como el mundo real», dijo Jones. “Están ahí como investigadores. Están en competencia, en cierto modo. Sólo uno puede ir.

Un comité local determinará las tres mejores propuestas, que luego se enviarán a un comité nacional que determinará el mejor experimento, siempre que cumpla ciertos requisitos, que irá a la ISS.

Además, toda la escuela, incluidos los estudiantes de primaria, competirá para diseñar un parche que irá al espacio con el experimento y se exhibirá en toda la escuela cuando regrese.

El profesor de ciencias de la Escuela High Plains, Peter Carlson, izquierda, se prepara para dejar caer una sandía a 102 pies de altura mientras el bombero de la Autoridad de Rescate de Bomberos de Loveland, Steve Irons, sostiene una manzana para arrojarla desde el camión en la escalera de la Autoridad de Rescate de Bomberos de Loveland mientras los estudiantes observan desde abajo. (Jenny Sparks/Loveland Reporter-Herald)

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

El próximo lanzamiento de la nave espacial SpaceX 'probablemente en 3 a 5 semanas', dice Elon Musk

Published

on

El próximo lanzamiento de la nave espacial SpaceX 'probablemente en 3 a 5 semanas', dice Elon Musk

Probablemente todavía estemos a un mes del próximo lanzamiento del megacohete Starship de SpaceX.

Esta fue la línea de tiempo propuesta por Elon Musk en un publicar en este fin de semana, diciendo que el próximo vuelo de prueba de Starship está «probablemente dentro de 3 a 5 semanas». “El objetivo es que el barco supere el nivel máximo de calefacción, o al menos más que la última vez”, añadió el empresario multimillonario.

Continue Reading

Horoscopo

Los científicos proponen una nueva teoría de la formación continental

Published

on

Los científicos proponen una nueva teoría de la formación continental

Un nuevo estudio realizado por investigadores de Penn State sugiere que los cratones, estructuras antiguas que estabilizan los continentes de la Tierra, se formaron hace unos 3 mil millones de años a través de procesos iniciados por la erosión atmosférica de las rocas, no solo por la aparición de masas continentales estables. Esto desafía los puntos de vista tradicionales y tiene implicaciones para comprender la evolución planetaria y las condiciones adecuadas para la vida.

Antiguas y vastas extensiones de corteza continental, conocidas como cratones, han estabilizado los continentes de la Tierra durante miles de millones de años mediante cambios en las masas terrestres, la formación de montañas y el desarrollo de los océanos. Los científicos de Penn State han sugerido un nuevo mecanismo que podría explicar la formación de cratones hace unos 3 mil millones de años, arrojando luz sobre una cuestión de larga data en la historia geológica de la Tierra.

Los científicos informaron en la revista. Naturaleza que es posible que los continentes no hayan surgido de los océanos de la Tierra como masas continentales estables, caracterizadas por una corteza superior enriquecida en granito. Más bien, la exposición de rocas frescas al viento y la lluvia hace unos 3 mil millones de años desencadenó una serie de procesos geológicos que finalmente estabilizaron la corteza, permitiéndole sobrevivir durante miles de millones de años sin ser destruida ni reajustada.

Los resultados podrían representar una nueva comprensión de cómo evolucionan los planetas potencialmente habitables similares a la Tierra, dijeron los científicos.

Implicaciones para la evolución planetaria

«Para crear un planeta como la Tierra, hay que crear una corteza continental y estabilizarla», dijo Jesse Reimink, profesor asistente de geociencias en Penn State y autor del estudio. “Los científicos han considerado que esto es lo mismo: los continentes se estabilizaron y luego emergieron sobre el nivel del mar, pero lo que estamos diciendo es que estos procesos son distintos.

READ  "Dr. Tawat Wirattipong ”de“ NASA - JPL ”subrayó apenas 7 años de dificultad para que los vehículos tailandeses lleguen a la luna.

Los cratones se extienden más de 150 kilómetros, o 93 millas, desde la superficie de la Tierra hasta el manto superior, donde actúan como la quilla de un barco, manteniendo los continentes flotando al nivel del mar o cerca de él durante todo el tiempo geológico, dijeron los científicos.

La meteorización puede haber concentrado en última instancia elementos productores de calor como uranio, torio y potasio en la corteza poco profunda, permitiendo que la corteza más profunda se enfríe y endurezca. Este mecanismo creó una capa de roca dura y gruesa que podría haber protegido el fondo de los continentes de una mayor deformación, una característica de los cratones, dicen los científicos.

Procesos geológicos y producción de calor.

«La receta para formar y estabilizar la corteza continental implica concentrar estos elementos productores de calor, que pueden considerarse como pequeños motores térmicos, muy cerca de la superficie», dijo Andrew Smye, profesor asociado de geociencias en Penn State y autor del trabajo. . estudiar. “Tenemos que hacer esto porque cada vez que átomo Cuando el uranio, el torio o el potasio se desintegran, liberan calor que puede aumentar la temperatura de la corteza. La corteza caliente es inestable: tiende a deformarse y no se pega.

Cuando el viento, la lluvia y las reacciones químicas destruyeron las rocas de los primeros continentes, los sedimentos y los minerales arcillosos fueron arrastrados a arroyos y ríos y llevados al mar, donde crearon depósitos sedimentarios como esquistos ricos en concentraciones de uranio, torio y potasio. dicen los científicos.

Antiguas rocas metamórficas llamadas gneis

Estas antiguas rocas metamórficas llamadas gneises, encontradas en la costa ártica, representan las raíces de los continentes ahora expuestos en la superficie. Los científicos dijeron que las rocas sedimentarias intercaladas en estos tipos de rocas proporcionarían un motor térmico para estabilizar los continentes. Crédito: Jesse Reimink

Las colisiones entre placas tectónicas enterraron estas rocas sedimentarias en las profundidades de la corteza terrestre, donde el calor radiogénico liberado por las esquistos provocó el derretimiento de la corteza inferior. Los derretimientos flotaron y ascendieron hacia la corteza superior, atrapando elementos productores de calor en rocas como el granito y permitiendo que la corteza inferior se enfriara y endureciera.

READ  Un nuevo descubrimiento transforma nuestra comprensión de los cristales

Se cree que los cratones se formaron hace entre 3 y 2.500 millones de años, una época en la que los elementos radiactivos como el uranio se habrían desintegrado aproximadamente al doble de velocidad y habrían liberado el doble de calor que en la actualidad.

El trabajo destaca que la época en que se formaron los cratones a principios de la Tierra Media era particularmente adecuada para los procesos que podrían haber conducido a su estabilidad, dijo Reimink.

«Podemos considerar esto como una cuestión de evolución planetaria», dijo Reimink. “Uno de los ingredientes clave que se necesitan para crear un planeta como la Tierra podría ser la aparición de continentes relativamente temprano en su vida. Porque se van a crear sedimentos radiactivos que están muy calientes y que producirán una corteza continental muy estable que vive alrededor del nivel del mar y es un entorno ideal para que se propague la vida.

Los investigadores analizaron las concentraciones de uranio, torio y potasio en cientos de muestras de rocas del período Arcaico, cuando se formaron los cratones, para evaluar la productividad térmica radiogénica basándose en las composiciones reales de las rocas. Utilizaron estos valores para crear modelos térmicos de formación de cratones.

«Anteriormente, la gente observaba y consideraba los efectos del cambio en la producción de calor radiogénico a lo largo del tiempo», dijo Smye. «Pero nuestro estudio vincula la producción de calor a partir de rocas con la aparición de continentes, la generación de sedimentos y la diferenciación de la corteza continental».

Los cratones, que normalmente se encuentran en el interior de los continentes, contienen algunas de las rocas más antiguas de la Tierra, pero siguen siendo difíciles de estudiar. En áreas tectónicamente activas, la formación de un cinturón montañoso podría sacar a la superficie rocas que alguna vez estuvieron enterradas a gran profundidad.

READ  Hubble crea una espiral giratoria en el espacio y captura una galaxia altamente perturbada

Pero los orígenes de los cratones siguen siendo profundamente subterráneos e inaccesibles. Los científicos dijeron que el trabajo futuro implicaría tomar muestras del interior de cratones antiguos y, tal vez, perforar núcleos para probar su modelo.

«Estas rocas sedimentarias metamorfoseadas que se han derretido y han producido granitos que concentran uranio y torio son como cajas negras que registran la presión y la temperatura», dijo Smye. «Y si podemos desbloquear estos archivos, podremos probar las predicciones de nuestro modelo sobre la trayectoria de vuelo de la corteza continental».

Referencia: “La erosión subaérea condujo a la estabilización de los continentes” por Jesse R. Reimink y Andrew J. Smye, 8 de mayo de 2024, Naturaleza.
DOI: 10.1038/s41586-024-07307-1

Penn State y la Fundación Nacional de Ciencias de EE. UU. financiaron este trabajo.

Continue Reading

Horoscopo

¿Qué causa los diferentes colores de las auroras? Un experto explica el arcoíris eléctrico

Published

on

¿Qué causa los diferentes colores de las auroras?  Un experto explica el arcoíris eléctrico

La semana pasada, una erupción solar masiva envió una ola de partículas energéticas del Sol al espacio. Durante el fin de semana, la ola llegó a la Tierra y personas de todo el mundo pudieron ver auroras inusualmente vívidas en ambos hemisferios.

Aunque la aurora normalmente sólo es visible cerca de los polos, fue vista este fin de semana. tan al sur como Hawaii en el hemisferio norte y tan al norte como Mackay En el sur.

Este espectacular pico de actividad auroral parece haber terminado, pero no te preocupes si te lo perdiste. El Sol se acerca a su punto máximo Ciclo de manchas solares de 11 añosy se espera que regresen períodos de intensa aurora durante el próximo año.

Si viste la aurora o alguna de las fotos, quizás te preguntes qué estaba pasando exactamente. ¿Qué hace que el brillo y los diferentes colores? La respuesta está en los átomos, en cómo se excitan y cómo se relajan.

Cuando los electrones se encuentran con la atmósfera.

Las auroras son causadas por partículas subatómicas cargadas (principalmente electrones) que chocan contra la atmósfera terrestre. Estos son emitidos por el Sol constantemente, pero son más numerosos durante los periodos de mayor actividad solar.

La mayor parte de nuestra atmósfera está protegida de la entrada de partículas cargadas por el campo magnético de la Tierra. Pero cerca de los polos, pueden colarse y causar estragos.

La atmósfera terrestre contiene aproximadamente un 20% de oxígeno y un 80% de nitrógeno, con algunas trazas de otros elementos como agua, dióxido de carbono (0,04%) y argón.

La aurora de mayo de 2024 también fue visible en la región de Emilia-Romaña en el norte de Italia.
Luca Argalia/Flickr, CC BY-NC-SA

Cuando los electrones de alta velocidad chocan con moléculas de oxígeno en la atmósfera superior, dividen las moléculas de oxígeno (O₂) en átomos individuales. La luz ultravioleta del Sol también hace esto, y los átomos de oxígeno generados pueden reaccionar con las moléculas de O₂ para producir ozono (O₃), la molécula que nos protege de los dañinos rayos UV.

READ  La colisión del asteroide DART de la NASA se muestra en fotos recientemente publicadas

Pero en el caso de la aurora boreal, los átomos de oxígeno generados están en un estado excitado. Esto significa que los electrones de los átomos están dispuestos de forma inestable y pueden “relajarse” liberando energía en forma de luz.

¿Qué da luz verde?

Como se ve en los fuegos artificiales, los átomos de diferentes elementos producen diferentes colores de luz cuando se les activa.

Los átomos de cobre dan luz azul, el bario es verde y los átomos de sodio producen un color amarillo anaranjado que quizás también hayas visto en las antiguas farolas de la calle. Estas emisiones están «permitidas» por las reglas de la mecánica cuántica, lo que significa que ocurren muy rápidamente.

Cuando un átomo de sodio está en estado excitado, sólo permanece allí durante unas 17 milmillonésimas de segundo antes de emitir un fotón de color amarillo anaranjado.

Pero, en la aurora boreal, muchos átomos de oxígeno se crean en estados excitados sin ninguna forma «permitida» de relajarse emitiendo luz. Sin embargo, la naturaleza encuentra un camino.

Un cielo nocturno moteado con luces verdes brillantes y rayas rosadas sobre ellas.
Aurora australis visible desde Oatlands, Tasmania, el 11 de mayo de 2024.
Imagen AAP/Ethan James

La luz verde que domina la aurora es emitida por átomos de oxígeno que se relajan desde un estado llamado “¹S” a un estado llamado “¹D”. Este es un proceso relativamente lento, que toma en promedio casi un segundo completo.

De hecho, esta transición es tan lenta que generalmente no ocurrirá con el tipo de presión atmosférica que vemos a nivel del suelo, porque el átomo excitado habrá perdido energía al chocar con otro átomo antes de que tenga la oportunidad de enviar un bonito mensaje verde. fotón. Pero en las capas superiores de la atmósfera, donde la presión atmosférica es menor y por tanto hay menos moléculas de oxígeno, tienen más tiempo antes de chocar y por tanto tienen posibilidades de liberar un fotón.

READ  Algunas grabaciones de ovnis deben ser publicadas, dice el Congreso de EE.UU.

Por esta razón, los científicos tardaron mucho en comprender que la luz verde de las auroras provenía de átomos de oxígeno. El brillo amarillo anaranjado del sodio se conoció en la década de 1860, pero no fue hasta la década de 1920 que científicos canadienses Entendí que el verde de la aurora se debía al oxígeno.

¿Qué hace la luz roja?

La luz verde proviene de la llamada transición «prohibida», que ocurre cuando un electrón en el átomo de oxígeno realiza un salto improbable de un patrón orbital a otro. (Las transiciones prohibidas son mucho menos probables que las permitidas, lo que significa que tardan más en ocurrir).

Sin embargo, incluso después de emitir este fotón verde, el átomo de oxígeno se encuentra en otro estado excitado sin posibilidad de relajación. La única salida es a través de otra transición prohibida, del estado ¹D al estado ³P, que emite una luz roja.

Esta transición está además prohibida, por así decirlo, y el estado ¹D debe sobrevivir durante unos dos minutos antes de que finalmente pueda romper las reglas y emitir una luz roja. Debido al tiempo necesario, la luz roja sólo aparece a grandes altitudes, donde las colisiones con otros átomos y moléculas son raras.

Además, debido a que hay muy poco oxígeno allí arriba, la luz roja tiende a aparecer sólo durante auroras intensas, como las que acabamos de tener.

Por eso la luz roja aparece encima de la verde. Aunque ambas surgen de relajaciones prohibidas de los átomos de oxígeno, la luz roja se emite mucho más lentamente y es más probable que se apague por colisiones con otros átomos en altitudes más bajas.

READ  La NASA está duplicando las opciones de trajes espaciales para los astronautas de la luna Artemis y las tripulaciones de la ISS

Otros colores y por qué las cámaras los ven mejor

Aunque el verde es el color más común en las auroras boreales y el rojo es el segundo color más común, también hay otros colores. En particular, las moléculas de nitrógeno ionizado (N₂⁺, a las que les falta un electrón y tienen una carga eléctrica positiva) pueden emitir luz azul y roja. Esto puede producir un tinte magenta en altitudes bajas.

Todos estos colores son visibles a simple vista si la aurora es lo suficientemente brillante. Sin embargo, aparecen con más intensidad en el objetivo de la cámara.

Hay dos razones para esto. En primer lugar, las cámaras se benefician de una exposición prolongada, lo que significa que pueden dedicar más tiempo a recoger luz para producir una imagen que nuestros ojos. Como resultado, pueden tomar una imagen en condiciones más oscuras.

La segunda es que los sensores de color de nuestros ojos no funcionan muy bien en la oscuridad, por lo que tendemos a ver en blanco y negro en condiciones de poca luz. Las cámaras no tienen esta limitación.

Pero no te preocupes. Cuando la aurora es lo suficientemente brillante, los colores son claramente visibles a simple vista.



Leer más: ¿Qué son las auroras boreales y por qué vienen en diferentes formas y colores? Dos expertos explican


Continue Reading

Trending