Connect with us

Horoscopo

¿Qué hay dentro de un agujero negro? Físico investiga dualidad holográfica con computación cuántica para averiguarlo

Published

on

Amigo, ¿y si todo lo que nos rodea fuera solo un… holograma?

El hecho es que podría serlo, y un físico de la Universidad de Michigan usa[{» attribute=»»>quantum computing and machine learning to better understand the idea, called holographic duality.

Holographic duality is a mathematical conjecture that connects theories of particles and their interactions with the theory of gravity. This conjecture suggests that the theory of gravity and the theory of particles are mathematically equivalent: what happens mathematically in the theory of gravity happens in the theory of particles, and vice versa.

Both theories describe different dimensions, but the number of dimensions they describe differs by one. So inside the shape of a black hole, for example, gravity exists in three dimensions while a particle theory exists in two dimensions, on its surface—a flat disk.

To envision this, think again of the black hole, which warps space-time because of its immense mass. The gravity of the black hole, which exists in three dimensions, connects mathematically to the particles dancing above it, in two dimensions. Therefore, a black hole exists in a three dimensional space, but we see it as projected through particles.

Black Hole Matrix Model Simulations

Enrico Rinaldi, research scientist in the University of Michigan Department of Physics, is using two simulation methods to solve quantum matrix models which can describe what the gravity of a black hole looks like. In this image, a pictorial representation of curved space time connects the two simulation methods. On the bottom, a deep learning method is represented by graphs of points (neural network), while the quantum circuit method on top is represented by lines, squares and circles (qubits and gates). The simulation methods merge with each side of the curved space time to represent the fact that gravity properties come out of the simulations. Rinaldi is based in Tokyo and hosted by the Theoretical Quantum Physics Laboratory at the Cluster for Pioneering Research at RIKEN, Wako. Credit: Enrico Rinaldi/U-M, RIKEN and A. Silvestri

Some scientists theorize our entire universe is a holographic projection of particles, and this could lead to a consistent quantum theory of gravity.

READ  Minorista de moda femenina Aritzia alquila espacio en Mag Mile

“In Einstein’s General Relativity theory, there are no particles—there’s just space-time. And in the Standard Model of particle physics, there’s no gravity, there’s just particles,” said Enrico Rinaldi, a research scientist in the U-M Department of Physics. “Connecting the two different theories is a longstanding issue in physics—something people have been trying to do since the last century.”

In a study published in the journal PRX Quantum, Rinaldi and his co-authors examine how to probe holographic duality using quantum computing and deep learning to find the lowest energy state of mathematical problems called quantum matrix models.

These quantum matrix models are representations of particle theory. Because holographic duality suggests that what happens, mathematically, in a system that represents particle theory will similarly affect a system that represents gravity, solving such a quantum matrix model could reveal information about gravity.

For the study, Rinaldi and his team used two matrix models simple enough to be solved using traditional methods, but which have all of the features of more complicated matrix models used to describe black holes through the holographic duality.

“We hope that by understanding the properties of this particle theory through the numerical experiments, we understand something about gravity,” said Rinaldi, who is based in Tokyo and hosted by the Theoretical Quantum Physics Laboratory at the Cluster for Pioneering Research at RIKEN, Wako. “Unfortunately it’s still not easy to solve the particle theories. And that’s where the computers can help us.”

These matrix models are blocks of numbers that represent objects in string theory, which is a framework in which particles in particle theory are represented by one-dimensional strings. When researchers solve matrix models like these, they are trying to find the specific configuration of particles in the system that represent the system’s lowest energy state, called the ground state. In the ground state, nothing happens to the system unless you add something to it that perturbs it.

READ  El Telescopio Espacial Hubble capta imágenes de un joven sistema multiestelar

“It’s really important to understand what this ground state looks like, because then you can create things from it,” Rinaldi said. “So for a material, knowing the ground state is like knowing, for example, if it’s a conductor, or if it’s a superconductor, or if it’s really strong, or if it’s weak. But finding this ground state among all the possible states is quite a difficult task. That’s why we are using these numerical methods.”

You can think of the numbers in the matrix models as grains of sand, Rinaldi says. When the sand is level, that’s the model’s ground state. But if there are ripples in the sand, you have to find a way to level them out. To solve this, the researchers first looked to quantum circuits. In this method, the quantum circuits are represented by wires, and each qubit, or bit of quantum information, is a wire. On top of the wires are gates, which are quantum operations dictating how information will pass along the wires.

“You can read them as music, going from left to right,” Rinaldi said. “If you read it as music, you’re basically transforming the qubits from the beginning into something new each step. But you don’t know which operations you should do as you go along, which notes to play. The shaking process will tweak all these gates to make them take the correct form such that at the end of the entire process, you reach the ground state. So you have all this music, and if you play it right, at the end, you have the ground state.”

The researchers then wanted to compare using this quantum circuit method to using a deep learning method. Deep learning is a kind of machine learning that uses a neural network approach—a series of algorithms that tries to find relationships in data, similar to how the human brain works.

Neural networks are used to design facial recognition software by being fed thousands of images of faces—from which they draw particular landmarks of the face in order to recognize individual images or generate new faces of persons who do not exist.

READ  Un estudio revela condiciones más hostiles en la Tierra a medida que evoluciona la vida

In Rinaldi’s study, the researchers define the mathematical description of the quantum state of their matrix model, called the quantum wave function. Then they use a special neural network in order to find the wave function of the matrix with the lowest possible energy—its ground state. The numbers of the neural network run through an iterative “optimization” process to find the matrix model’s ground state, tapping the bucket of sand so all of its grains are leveled.

In both approaches, the researchers were able to find the ground state of both matrix models they examined, but the quantum circuits are limited by a small number of qubits. Current quantum hardware can only handle a few dozens of qubits: adding lines to your music sheet becomes expensive, and the more you add the less precisely you can play the music.

“Other methods people typically use can find the energy of the ground state but not the entire structure of the wave function,” Rinaldi said. “We have shown how to get the full information about the ground state using these new emerging technologies, quantum computers, and deep learning.

“Because these matrices are one possible representation for a special type of black hole, if we know how the matrices are arranged and what their properties are, we can know, for example, what a black hole looks like on the inside. What is on the event horizon for a black hole? Where does it come from? Answering these questions would be a step towards realizing a quantum theory of gravity.”

The results, says Rinaldi, show an important benchmark for future work on quantum and machine learning algorithms that researchers can use to study quantum gravity through the idea of holographic duality.

Next, Rinaldi is working with Nori and Hanada to study how the results of these algorithms can scale to larger matrices, as well as how robust they are against the introduction of “noisy” effects, or interferences that can introduce errors.

Reference: “Matrix-Model Simulations Using Quantum Computing, Deep Learning, and Lattice Monte Carlo” by Enrico Rinaldi, Xizhi Han, Mohammad Hassan, Yuan Feng, Franco Nori, Michael McGuigan and Masanori Hanada, 10 February 2022, PRX Quantum.
DOI: 10.1103/PRXQuantum.3.010324

Rinaldi’s co-authors include Xizhi Han at Stanford University; Mohammad Hassan at City College of New York; Yuan Feng at Pasadena City College; Franco Nori at U-M and RIKEN; Michael McGuigan at Brookhaven National Laboratory and Masanori Hanada at University of Surrey.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

El Boeing Starliner llega a la plataforma de lanzamiento para el primer vuelo de astronautas el 6 de mayo (fotos)

Published

on

El Boeing Starliner llega a la plataforma de lanzamiento para el primer vuelo de astronautas el 6 de mayo (fotos)

CABO CAÑAVERAL — ¡Que Rocket Force esté contigo!

Un cohete Atlas V se desplegó en su plataforma de lanzamiento el sábado 4 de mayo, también Día de Star Wars, en la estación espacial de Cabo Cañaveral, días antes de su histórica primera misión con astronautas. En lo alto del propulsor de United Launch Alliance estaba la nave espacial Starliner de Boeing, que también realizará su primer vuelo con humanos a bordo después de su lanzamiento no antes del lunes 6 de mayo.

Continue Reading

Horoscopo

Probablemente nos equivoquemos nuevamente sobre el T.Rex, según un nuevo estudio: ScienceAlert

Published

on

Probablemente nos equivoquemos nuevamente sobre el T.Rex, según un nuevo estudio: ScienceAlert

¿Estúpido idiota o músculo inteligente? El debate ha terminado Tirano saurio Rex La inteligencia continúa, con un nuevo artículo que se basa en la teoría original de que estos temibles gigantes no eran tan brillantes.

En 2023, un controvertido estudio sugirió que uno de los dinosaurios más infames del mundo, tirano-saurio RexPodría ser tan inteligente como los simios modernos, lo que provocó mucho escepticismo entre otros investigadores que ahora han presentado sus resultados.

«La posibilidad de que Tirano saurio Rex podría haber sido tan inteligente como un babuino es fascinante y aterrador, con el potencial de reinventar nuestra visión del pasado», explicar Darren Naish, paleontólogo de la Universidad de Southampton. «Pero nuestro estudio muestra cómo todos los datos que tenemos van en contra de esta idea».

Dirigido por el zoólogo Kai Caspar de Universidad Heinrich Heine en AlemaniaEl nuevo estudio encontró que las mediciones del tamaño del cerebro en el estudio de 2023 eran inexactas, lo que inflaba las estimaciones sobre cuántas neuronas los reptiles prehistóricos podían caber en sus cabezas, particularmente en el prosencéfalo.

Esta sobreestimación se debió principalmente al hecho de que el artículo original suponía Tirano saurio Rex El cerebro ocupaba la mayor parte del espacio endocraneal, lo que no ocurre en la mayoría de los dinosaurios, Naish explica en un artículo de blog.

Relación entre cerebro y masa corporal en vertebrados terrestres. los dinosaurios aman Tirano saurio Rex Tienen una proporción de tamaño cerebro-cuerpo similar a la de los reptiles vivos. (Gutiérrez-Ibáñez)

Además, Caspar y sus colegas sostienen que el número de neuronas no rastrea de manera confiable la inteligencia. Tomemos como ejemplo a los pájaros: durante mucho tiempo se pensó que el tamaño pequeño de su cabeza significaba que tenían menos neuronas y, por lo tanto, no eran muy inteligentes.

READ  Minorista de moda femenina Aritzia alquila espacio en Mag Mile

Pero desde entonces hemos aprendido que aves como los cuervos pueden superar a los primates en ciertas tareas cognitivas a pesar de tener cabezas más pequeñas, lo que lleva a la conclusión de que otros factores además del tamaño del cerebro, como los patrones de conectividad, desempeñan un papel muy importante en la determinación de la inteligencia.

«Argumentamos que no es una buena práctica predecir la inteligencia en especies extintas cuando lo único que tenemos es la cantidad de neuronas reconstruidas a partir de endocasts». dicho Casper.

En cambio, se necesitan múltiples fuentes de datos, desde anatomía hasta pistas sobre el comportamiento y más comparaciones con los animales modernos, para hacer estimaciones más precisas sobre las inteligencias prehistóricas.

«Se necesita una comprensión significativamente mejorada de la relación entre el número de neuronas y otras variables biológicas, particularmente el rendimiento cognitivo, en los animales existentes» antes de que puedan ocurrir predicciones más precisas, dijo el equipo. argumenta en su artículo.

Árbol de relaciones entre reptiles, dinosaurios y aves así como su complejidad cerebral
Las relaciones entre grupos de reptiles, así como una representación de su complejidad cerebral, muestran que los cerebros de los tiranosaurios no son tan diferentes de los de los crocodilomorfos. (Caspar et al., El archivo anatómico2024).

Entonces, ¿dónde deja eso a la Tirano saurio Rex?

La evidencia conductual reciente sugiere que los famosos reptiles prehistóricos pueden haber sido sorprendentemente sociales, cazar en manadaspero esto no es suficiente para sugerir inteligencia a nivel de primates.

«Se parecían más a cocodrilos gigantes e inteligentes, y eso es igualmente fascinante». concluye Naish.

Esta investigación fue publicada en El archivo anatómico.

Continue Reading

Horoscopo

El brillo de un exoplaneta podría provenir de la luz de las estrellas que se refleja en el hierro líquido

Published

on

El brillo de un exoplaneta podría provenir de la luz de las estrellas que se refleja en el hierro líquido
Agrandar / Impresión artística de una gloria en el exoplaneta WASP-76b.

¿Existen arcoíris en mundos distantes? Muchos fenómenos que ocurren en la Tierra, como la lluvia, los huracanes y la aurora boreal, también ocurren en otros planetas de nuestro sistema solar si las condiciones son adecuadas. Ahora tenemos evidencia desde fuera de nuestro sistema solar de que un exoplaneta particularmente extraño podría incluso mostrar algo parecido a un arco iris.

Un fenómeno llamado «gloria», que aparece en el cielo como un halo de colores, se produce cuando la luz incide en nubes formadas por una sustancia homogénea en forma de gotas esféricas. Esta podría ser la explicación de un misterio relacionado con las observaciones del exoplaneta WASP-76B. También se observó que este planeta, un gigante gaseoso en llamas que experimenta lluvias de hierro fundido, tiene más luz en su terminador oriental (una línea utilizada para separar el lado diurno del lado nocturno) que en su terminador occidental. ¿Por qué había más luz en un lado del planeta?

Después de observarla con el telescopio espacial CHEOPS y luego combinarla con observaciones anteriores del Hubble, Spitzer y TESS, un equipo de investigadores de la ESA y la Universidad de Berna en Suiza cree ahora que la razón más probable de esta luz adicional es una gloria. .

Mira la luz

Durante tres años, CHEOPS llevó a cabo 23 observaciones de WASP-76B en luz visible e infrarroja. Estos incluyen curvas de fasetránsitos y eclipses secundarios. Las curvas de fase son observaciones continuas que siguen la revolución completa de un planeta y muestran cambios en su fase o en la parte de su lado iluminado que mira al telescopio. El telescopio puede ver este lado más o menos a medida que el planeta orbita su estrella. Las curvas de fase pueden determinar el cambio en el brillo total del planeta y la estrella a medida que el planeta gira.

READ  La terapia con anticuerpos monoclonales NEJM Lily no tiene ningún efecto en pacientes hospitalizados con Corona

Los eclipses secundarios ocurren cuando un planeta pasa detrás de su estrella anfitriona y es eclipsado por ella. La luz vista durante un eclipse de este tipo se puede comparar con la luz total antes y después de la ocultación para darnos una idea de la luz reflejada por el planeta. Los Júpiter calientes como WASP-76B se observan comúnmente durante los eclipses secundarios.

Las observaciones de las curvas de fase pueden continuar a medida que el planeta eclipsa a su estrella. Mientras observaba la curva de fase de WASP-76B, CHEOPS vio un exceso de luz previa al eclipse en su lado nocturno. Esto también se había observado en la curva de fase TESS y en las observaciones del eclipse secundario realizadas anteriormente.

¿El fin del arcoíris?

Una ventaja de WASP-76b es que es un Júpiter ultracaliente, por lo que al menos su lado diurno no presenta las nubes y nieblas que a menudo oscurecen las atmósferas de los Júpiter calientes y fríos. Esto hace que las emisiones al aire sean mucho más fáciles de detectar. Que ya habíamos observado una asimetría en el contenido de hierro entre los terminadores del lado diurno y del lado nocturno, descubierta en un estudio previo, hizo que el planeta fuera particularmente intrigante. No había mucho gas de hierro en la atmósfera superior de la rama diurna en comparación con la de la rama nocturna. Probablemente esto se deba a que llueve hierro en el lado diurno de WASP-76b, que luego se condensa en nubes de hierro en el lado nocturno.

Las observaciones de Hubble sugieren que la inversión térmica (cuando el aire cerca de la superficie de un planeta comienza a enfriarse) estaba ocurriendo en el lado nocturno. El enfriamiento en ese lado causaría la condensación del hierro que previamente se había condensado en nubes, llovió en el lado del día y luego se evaporó por el intenso calor. Entonces, las gotas de hierro líquido pueden formar nubes.

READ  Minorista de moda femenina Aritzia alquila espacio en Mag Mile

Estas nubes son fundamentales ya que la luz de la estrella anfitriona, reflejada por estas gotas en estas nubes, puede crear un efecto de gloria.

«Para explicar la observación con el efecto Gloria se necesitarían gotas esféricas de aerosoles y nubes altamente reflectantes y de forma esférica sobre el hemisferio oriental del planeta», dijeron los investigadores en un artículo publicado recientemente en Astronomy & Astrophysics.

Glorias ya se han visto fuera de la Tierra. También se sabe que se forman en nubes de Venus. Al igual que WASP-76b, en Venus se observó más luz previa al eclipse. Entonces, aunque la gloria es casi definitiva para el exoplaneta, futuras observaciones con un telescopio más potente podrían ayudar a determinar qué tan similar es el fenómeno de WASP-76 al de WASP-76b. Venus. Si coinciden, será la primera gloria jamás observada en un exoplaneta.

Si futuras investigaciones encuentran una manera precisa de determinar si realmente es una gloria, estos fenómenos podrían decirnos más sobre la composición atmosférica de los exoplanetas, en función de los tipos de elementos o moléculas sobre los que se refleja la luz. Incluso podrían delatar la presencia de agua, lo que podría significar habitabilidad. Aunque la supuesta gloria de WASP-76b no se ha demostrado definitivamente, es todo menos un arco iris en la oscuridad.

Astronomía y astrofísica, 2024. DOI: 10.1051/0004-6361/202348270

Continue Reading

Trending