Los investigadores utilizaron datos termocronométricos de cuatro lugares de América del Norte para determinar la causa de la «Gran Disconformidad», una pérdida masiva de roca hace unos 700 millones de años. Crédito: Figura de Kalin McDannell
La acción del hielo parece ser la responsable de la antigua erosión de las rocas en todo el planeta.
Una nueva investigación proporciona más evidencia de que las rocas que representan hasta mil millones de años de tiempo geológico fueron talladas por antiguos glaciares durante el período de «Tierra bola de nieve» del planeta, según un estudio publicado en procedimientos de la Academia Nacional de Ciencias.
La investigación presenta los últimos hallazgos en un debate sobre qué causó la «Gran Disconformidad» de la Tierra: un intervalo de tiempo en el registro geológico asociado con la erosión de rocas de hasta 3 millas de espesor en áreas de todo el mundo.
«El hecho de que en tantos lugares falten las rocas sedimentarias de este período ha sido una de las características más desconcertantes del registro de rocas», dijo C. Brenhin Keller, profesor asistente de ciencias de la tierra e investigador principal del estudio. “Con estos resultados, el patrón comienza a tener mucho más sentido”.
La enorme cantidad de roca que falta que se conoce como la Gran Disconformidad se nombró por primera vez en el Gran Cañón a fines del siglo XIX. La característica geológica conspicua es visible donde se intercalan capas de rocas de períodos de tiempo distantes, y a menudo se identifica donde las rocas con fósiles se asientan directamente sobre las que no contienen fósiles.
En el Cañón Ladder de Colorado, rocas que difieren en edad en aproximadamente mil millones de años se sientan juntas a lo largo de la Gran Disconformidad. Crédito: C. Brenhin Keller
“Este fue un momento fascinante en la historia de la Tierra”, dijo Kalin McDannell, investigador postdoctoral en Dartmouth y autor principal del artículo. “La Gran Discordancia prepara el escenario para la explosión de vida del Cámbrico, que siempre ha sido desconcertante ya que es tan abrupta en el registro fósil: los procesos geológicos y evolutivos suelen ser graduales”.
Durante más de un siglo, los investigadores han tratado de explicar la causa del tiempo geológico perdido.
En los últimos cinco años, se han puesto de manifiesto dos teorías opuestas: una explica que la roca fue tallada por antiguos glaciares durante el período de la Tierra Bola de Nieve hace unos 700 a 635 millones de años. El otro se enfoca en una serie de eventos de placas tectónicas durante un período mucho más largo durante el ensamblaje y la ruptura del supercontinente Rodinia desde hace aproximadamente 1000 millones a 550 millones de años.
La investigación dirigida por Keller en 2019 propuso por primera vez que la erosión generalizada de las capas de hielo continentales durante el intervalo glacial criogénico causó la pérdida de roca. Esto se basó en proxies geoquímicos que sugirieron que grandes cantidades de erosión masiva coincidían con el período de la Tierra Bola de Nieve.
“La nueva investigación verifica y avanza los hallazgos del estudio anterior”, dijo Keller. “Aquí proporcionamos evidencia independiente de enfriamiento de rocas y millas de exhumación en el período criogénico en una gran área de América del Norte”.
El estudio se relaciona con una interpretación detallada de la termocronología para realizar la evaluación.
C. Brenhin Keller, profesor asistente de ciencias de la tierra, a la izquierda, y Kalin McDannell, investigadora posdoctoral en ciencias de la tierra. Crédito: Eli Burakian/Dartmouth College
La termocronología permite a los investigadores estimar la temperatura que experimentan los cristales minerales a lo largo del tiempo, así como su posición en la corteza continental dada una estructura térmica particular. Esas historias pueden proporcionar evidencia de cuándo se eliminó la roca que faltaba y cuándo se pudieron haber exhumado las rocas actualmente expuestas en la superficie.
Los investigadores utilizaron múltiples mediciones de datos termocronométricos publicados previamente tomados en cuatro ubicaciones de América del Norte. Las áreas, conocidas como cratones, son partes del continente que son química y físicamente estables, y donde la actividad de las placas tectónicas no habría sido común durante ese tiempo.
Al ejecutar simulaciones que buscaron la trayectoria de tiempo y temperatura que experimentaron las rocas, la investigación registró una señal generalizada de enfriamiento rápido y de alta magnitud que es consistente con aproximadamente 2-3 millas de erosión durante las glaciaciones de Snowball Earth en el interior de América del Norte.
“Mientras que otros estudios han utilizado la termocronología para cuestionar el origen glacial, un fenómeno global como la Gran Discordancia requiere una evaluación global”, dijo McDannell. “La glaciación es la explicación más simple de la erosión en una vasta área durante el período de la Tierra Bola de Nieve, ya que se creía que las capas de hielo cubrían la mayor parte de América del Norte en ese momento y pueden ser excavadores eficientes de rocas”.
Según el equipo de investigación, la teoría en competencia de que la actividad tectónica esculpió la roca que falta se presentó en 2020 cuando un grupo de investigación independiente cuestionó si los glaciares antiguos eran lo suficientemente erosivos como para causar la pérdida masiva de roca. Si bien esa investigación también usó termocronología, aplicó una técnica alternativa en una sola ubicación tectónicamente activa y sugirió que la erosión ocurrió antes de Snowball Earth.
“El concepto subyacente es bastante simple: algo eliminó una gran cantidad de roca, lo que resultó en una gran cantidad de tiempo perdido”, dijo Keller. «Nuestra investigación demuestra que solo la erosión glacial podría ser responsable a esta escala».
Según los investigadores, los nuevos hallazgos también ayudan a explicar los vínculos entre la erosión de las rocas y la aparición de organismos complejos hace unos 530 millones de años durante la explosión del Cámbrico. Se cree que la erosión durante el período de la Tierra Bola de Nieve depositó sedimentos ricos en nutrientes en el océano que podrían haber proporcionado un entorno fértil para los componentes básicos de la vida compleja.
El estudio señala que las dos hipótesis de cómo se erosionó la roca no son mutuamente excluyentes: es posible que tanto la tectónica como la glaciación hayan contribuido a la interrupción del sistema global de la Tierra durante la formación de la Gran Discordancia. Sin embargo, parece que solo la glaciación puede explicar la erosión en el centro del continente, lejos de los márgenes tectónicos.
“En última instancia, con respecto a la Gran Discordancia, puede ser que la(s) reconstrucción(es) generalmente aceptada(s) de un empaquetamiento ecuatorial más concentrado de los continentes rodinianos junto con las condiciones ambientales únicas del Neoproterozoico, demostraron ser un tiempo de casualidad geológica diferente a la mayoría de los demás. otro en la historia de la Tierra”, dice el trabajo de investigación.
Según el equipo, esta es la primera investigación que utiliza su enfoque de modelado termocronológico para estudiar un período que se extiende mucho más allá de los mil millones de años. En el futuro, el equipo repetirá su trabajo en otros continentes, donde esperan seguir probando estas hipótesis sobre cómo se creó y preservó la Gran Discordancia.
Según el equipo, resolver las diferencias en la investigación es fundamental para comprender la historia temprana de la Tierra y la interconexión de los procesos climáticos, tectónicos y biogeoquímicos.
«El hecho de que haya habido erosión tectónica a lo largo de los márgenes del cratón no descarta la glaciación», dijo McDannell. “Las discordancias son características compuestas, y nuestro trabajo sugiere que la erosión criogénica fue un contribuyente clave, pero es posible que tanto la erosión anterior como la posterior estuvieran involucradas en la formación de la superficie de discordancia en diferentes lugares. Un examen global nos dirá más”.
Referencia: “Restricciones termocronológicas sobre el origen de la Gran Discordancia” 25 de enero de 2022, procedimientos de la Academia Nacional de Ciencias. DOI: 10.1073/pnas.2118682119
William Guenthner, de la Universidad de Illinois en Urbana-Champaign; Peter Zeitler de Universidad de Lehigh; y David Shuster de la Universidad de California, Berkeley y el Centro de Geocronología de Berkeley fueron coautores del artículo.
Los picos de temperatura sobre la Antártida en julio representan el calentamiento más temprano de la estratosfera registrado, NASA muestran las observaciones.
Los científicos atmosféricos monitorean de cerca esta región de la atmósfera de la tierraque se extiende desde aproximadamente 6 a 50 kilómetros sobre la superficie terrestre, durante el invierno del hemisferio sur. Lorenzo Coy Y Pablo NewmanAmbos científicos atmosféricos de la NASA. Oficina Global de Modelado y Asimilación (GMAO)crear elaborado Modelos de asimilación y reanálisis de datos. de la atmósfera global y prestó especial atención a los eventos de calentamiento inusuales y «sorprendentes».
Generalmente la temperatura en la estratosfera media, a unos 30 km por encima TierraEn la superficie de la Antártida, la temperatura ronda los -80 grados centígrados, pero el 7 de julio saltó de -3 grados centígrados a -65 grados centígrados. Este pico estableció un nuevo récord para la temperatura más alta de julio detectada en la estratosfera sobre la Antártida.
«El evento de julio fue el calentamiento estratosférico más temprano jamás observado en los 44 años de registros CMMS», dijo Coy en un comunicado. declaración.
La temperatura duró dos semanas, antes de volver a bajar el 22 de julio. Hubo una breve pausa antes de otro aumento a 31°F (-1°C) el 5 de agosto.
En invierno, la estratosfera está dominada por vientos del oeste que rodean el Polo Sur a unos 300 km/h. Comúnmente llamado vórtice polar, el flujo alrededor de los polos es normalmente simétrico. Sin embargo, a veces el flujo se interrumpe y los vientos se debilitan, la forma del flujo cambia. A medida que el vórtice polar se extiende más, los vientos disminuyen, lo que provoca un calentamiento significativo de la estratosfera sobre la región antártica.
Relacionado: Los datos satelitales revelan que el glaciar Thwaites de la Antártida se está derritiendo más rápido de lo esperado
¡Las últimas noticias espaciales, las últimas actualizaciones sobre lanzamientos de cohetes, eventos de observación del cielo y más!
El vórtice polar del hemisferio sur normalmente permanece menos activo que su homólogo ártico. «Los eventos de calentamiento repentino ocurren en la Antártida aproximadamente una vez cada cinco años, con mucha menos frecuencia que en el Ártico», dijo Coy. Esto probablemente se debe a que el hemisferio norte es más grande, lo que puede alterar el flujo del viento en la troposfera, la capa atmosférica inferior cercana al suelo, dijo. Los sistemas climáticos a gran escala que se desarrollan en la troposfera y avanzan hacia la estratosfera pueden afectar el vórtice polar.
El clima troposférico de julio sobre la Antártida también coincidió con julio de 1991 como el Se observa el quinto mes de julio más cálido. Sin embargo, el calentamiento repentino de la estratosfera no tiene necesariamente un vínculo obvio con el clima, señaló Newman.
«Las variaciones en las temperaturas de la superficie del mar y del hielo marino pueden alterar estos sistemas climáticos a gran escala en la troposfera que se propagan hacia arriba», dijo Newman en el comunicado. “Pero es muy difícil explicar por qué se desarrollan estos sistemas. »
Nota del editor: Este artículo se actualizó a las 12:05 p. m. EDT del 16 de septiembre para corregir algunas conversiones de temperatura entre Fahrenheit y Celsius.
Un equipo de científicos presentó un nuevo mapa de gravedad de Marzo en el Congreso Científico Europlanet 2024 El mapa muestra la presencia de estructuras densas y de gran escala debajo del océano desaparecido hace mucho tiempo de Marte y que los procesos del manto están afectando a Olympus Mons, el volcán más grande del sistema solar.
El nuevo mapa y los análisis incluyen datos de varias misiones, incluida la misión InSIGHT (Exploración interior mediante investigaciones sísmicas, geodesia y transporte de calor) de la NASA. También utilizan datos de pequeñas desviaciones de los satélites que orbitan alrededor de Marte.
El artículo «El campo gravitacional global de Marte revela un interior activo» se publicará en el próximo número de JGR: Planets. El autor principal es Bart Root de la Universidad Tecnológica de Delft. Algunos resultados van en contra de un concepto importante en geología.
Los geólogos trabajan con un concepto llamado isostasia de flexión. Describe cómo responde la rígida capa exterior de un planeta a cargas y descargas a gran escala. Esta capa se llama litosfera y está formada por la corteza y la parte superior del manto.
Cuando algo pesado ejerce presión sobre la litosfera, ésta responde hundiéndose. En la Tierra, Groenlandia es un buen ejemplo: la inmensa capa de hielo ejerce una presión hacia abajo sobre la superficie terrestre. A medida que sus casquetes polares se derritan debido al calentamiento global, Groenlandia crecerá.
Esta curvatura hacia abajo a menudo hace que las áreas circundantes se levanten, aunque el efecto es leve. Cuanto mayor es la carga, más pronunciada es la flexión hacia abajo, aunque también depende de la resistencia y elasticidad de la litosfera. La isostasia de flexión es una idea esencial para comprender el rebote de los glaciares, la formación de montañas y la formación de cuencas sedimentarias.
Los autores del nuevo estudio dicen que los científicos necesitan repensar cómo funciona la isostasia de flexión en Marte. Esto se debe al Olympus Mons, el volcán más grande del sistema solar, y a toda la región volcánica llamada Tharsis Rise, o Tharsis MontesTharsis Montes es una vasta región volcánica que alberga otros tres enormes volcanes en escudo: Arsia Mons, Pavonis Mons y Ascraeus Mons.
La isostasia de flexión indica que esta enorme región debería forzar la superficie del planeta hacia abajo. Pero es todo lo contrario. Tharsis Montes está mucho más alta que el resto de la superficie de Marte. El módulo de aterrizaje InSIGHT de la NASA también ha enseñado mucho a los científicos sobre la gravedad de Marte y juntos están obligando a los investigadores a reconsiderar cómo funciona todo en Marte.
«Esto significa que debemos repensar nuestra comprensión del soporte del gran volcán y sus alrededores», escriben los autores. “La señal gravitacional de su superficie corresponde bien a un modelo que considera al planeta como una capa delgada. »
La investigación muestra que procesos activos en el manto marciano están impulsando a Tharsis Montes hacia arriba. «Parece haber una gran masa (algo ligero) en lo profundo de la capa marciana, que podría surgir del manto», escriben los autores. “Esto muestra que Marte todavía podría estar experimentando movimientos activos internamente, creando nuevos volcanes en la superficie. »
Los investigadores descubrieron una masa subterránea de aproximadamente 1.750 kilómetros de diámetro y a una profundidad de 1.100 kilómetros. Sospechan que es una columna de manto que se eleva debajo de Tharsis Montes y es lo suficientemente fuerte como para contrarrestar la presión descendente ejercida por toda la masa.
«Esto sugiere que una columna de humo está fluyendo actualmente hacia la litosfera para generar vulcanismo activo en el futuro geológico», escriben los autores en su artículo.
Existe debate sobre el grado de actividad volcánica en Marte. Aunque no hay volcanes activos en el planeta, investigación muestra que la región de Tharsis resurgió en el pasado geológico cercano durante las últimas decenas de millones de años.
Si hay una columna de manto debajo de Tharsis Montes, ¿podría llegar a la superficie? Esto es puramente especulativo y se necesita más investigación para confirmar estos hallazgos.
Los investigadores también descubrieron otras anomalías gravitacionales. Descubrieron estructuras densas y misteriosas debajo de las llanuras polares del norte de Marte. Están enterrados bajo una gruesa capa de sedimentos lisos que probablemente fueron depositados en un antiguo fondo marino.
Las anomalías rondan los 300 a 400 kg/m3 más denso que su entorno. La Luna de la Tierra exhibe anomalías gravitacionales asociadas con cuencas de impacto gigantes. Los científicos creen que los impactadores que crearon las cuencas eran más densos que la lunay su masa pasó a formar parte de la Luna.
Las cuencas de impacto de Marte también presentan anomalías gravitacionales. Por otro lado, las anomalías en el hemisferio norte de Marte no muestran ningún rastro de él en la superficie.
“Estas densas estructuras podrían ser de origen volcánico o estar hechas de material compactado debido a impactos antiguos. Identificamos unas 20 estructuras de diferentes tamaños repartidas por el casquete polar norte, una de las cuales tiene la forma de un perro”, dijo el Dr. Root.
«Parece que no hay rastro de ellos en la superficie. Sin embargo, a través de datos de gravedad«Tenemos una visión fascinante de la historia antigua del hemisferio norte de Marte».
La única manera de comprender estas misteriosas estructuras y la gravedad de Marte en general es obtener más datos. Root y sus colegas proponen una misión que podría recopilar los datos necesarios.
La misión se llamará misión Martian Quantum Gravity (MaQuls). Se basaría en la misma tecnología que la utilizada en las misiones GRAIL (Gravity Recovery and Interior Laboratory) y GRACE (Gravity Recovery and Climate Experiment), que cartografiaron la gravedad de la Luna y la Tierra respectivamente. MaQuls estaría compuesto por dos satélites seguidos y unidos por un enlace óptico.
“Las observaciones con MaQuIs nos permitirían explorar mejor el subsuelo de Marte. Esto nos ayudaría a aprender más sobre estas misteriosas características ocultas y a estudiar la convección en curso del manto, así como a comprender los procesos dinámicos de la superficie, como los cambios atmosféricos estacionales y la detección de depósitos de agua subterráneos”, dijo la Dra. Lisa Wörner del DLR, quien presentó la misión MaQuIs en EPSC2024 esta semana.
Si bien a los meteorólogos les gusta llamar otoño a principios de septiembre, la caída astronómica comienza más tarde, en la línea de otoño. equinoccioEste año, cae el domingo 22 de septiembre a las 8:44 a. m. EDT (12:44 p. m. UTC), según el Servicio Meteorológico Nacional.
En este punto, el eje de la Tierra está inclinado hacia el Sol, lo que significa que hay casi la misma cantidad de luz solar y oscuridad en el globo.
Esta geometría celeste marca el cambio de estaciones: del verano al otoño en el hemisferio norte y del invierno a la primavera en el hemisferio sur. La palabra «equinoccio» es una palabra latina que significa «noche igual», uno de los dos días del año en los que la duración del día y la oscuridad son iguales en todas partes del planeta.
El equinoccio de otoño es una ocasión importante para marcar el viaje anual de la Tierra alrededor del Sol. Las horas de oscuridad aumentarán gradualmente al norte del ecuador hasta el solsticio del 21 de diciembre, y viceversa al sur del ecuador.
Relacionado: Un asteroide “potencialmente peligroso” del tamaño de un rascacielos podría pasar cerca de la Tierra el martes
Más horas nocturnas también significan más horas para observar las estrellas; algunos de ellos Las mejores lluvias de meteoritos del año están por llegary las siguientes tres lunas llenas, incluida la Luna de cosecha el 17 de septiembreHabrá superlunas, lo que las hará parecer más grandes y brillantes en el cielo. Si no tienes buen par de binoculares para observar las estrellas o un lindo telescopio de patio traseroAhora es el momento perfecto para invertir en un dispositivo de este tipo.
Los equinoccios y solsticios se producen cuando el eje de la Tierra está inclinado 23,5 grados, lo que significa que diferentes partes del planeta reciben más o menos luz solar a lo largo del año.
Reciba los descubrimientos más fascinantes del mundo directamente en su bandeja de entrada.
Para aquellos que se encuentran en el ecuador, el sol del mediodía brillará directamente sobre sus cabezas durante el equinoccio. Para todos los demás, el equinoccio es un evento difícil de ver.
Una de las mejores formas de celebrar su paso este año es observar el amanecer y el atardecer, que tendrán lugar en el este y oeste respectivamente. Esto sólo ocurre en los equinoccios, cuando el sol cruza el ecuador celeste (la línea imaginaria entre los cielos de los hemisferios norte y sur), sin importar en qué parte del planeta te encuentres.