Ha surgido nueva evidencia que sugiere que los componentes básicos de la vida fueron traídos a la Tierra primordial desde el espacio mediante meteoritos, un descubrimiento que podría ayudar a los científicos a buscar vida extraterrestre.
Se cree que estos meteoritos fueron restos fracturados de los primeros «asteroides no fundidos», un tipo de planetesimal. Los planetesimales son pequeños cuerpos rocosos que sirvieron como componentes básicos de los planetas rocosos del Sistema Solar, incluida la Tierra. Se formaron hace unos 4.600 millones de años en el disco de polvo y gas que rodeaba al sol naciente, cuando las partículas alrededor de nuestra joven estrella comenzaron a pegarse, acumulando más masa y formando cuerpos cada vez más grandes.
Un equipo de investigadores rastreó el elemento químico zinc que se encuentra en los meteoritos para determinar el origen de los «volátiles» de la Tierra. Son elementos o compuestos que se convierten en vapor a temperaturas relativamente bajas. Son importantes porque contienen seis sustancias químicas comunes y vitales para los seres vivos, incluida el agua.
“Una de las preguntas más fundamentales sobre el origen de la vida es de dónde provienen los materiales que necesitamos para que la vida evolucione”, dijo en un comunicado de prensa la líder del equipo de estudio Rayssa Martins, del Departamento de Ciencias de la Tierra de la Universidad de Cambridge en Inglaterra. liberar. .
«Si podemos entender cómo aparecieron estos materiales en la Tierra, podríamos darnos pistas sobre dónde se originó la vida aquí y cómo podría surgir en otros lugares», añadió Martins.
Relacionado: Los componentes básicos de la vida pueden formarse rápidamente alrededor de estrellas jóvenes
Sigue el zinc
Martins y sus colegas de Cambridge y el Imperial College de Londres eligieron el zinc porque, cuando se forma en meteoritos, tiene una composición única que puede utilizarse para identificar el origen de sustancias volátiles.
El equipo descubrió previamente que el zinc en la Tierra parecía provenir de diferentes regiones del sistema solar. Aproximadamente la mitad procedía de la región interior del sistema solar, cercana a nuestro planeta y otros mundos rocosos cercanos al sol. Sin embargo, la otra mitad parece provenir de más allá del quinto planeta del Sol, el gigante gaseoso Júpiter.
Esto es posible evaluar porque no todos los planetesimales son iguales. Los planetesimales que se formaron en los primeros días del sistema solar estuvieron expuestos a altos niveles de radiación del Sol naciente. Esto provocó que se derritieran, perdiendo fácilmente sustancias volátiles mediante la vaporización.
Los planetesimales que se unieron más tarde durante los años de formación del sistema solar no estuvieron expuestos a tanta radiación, lo que significa que no experimentaron tanta fusión y pudieron retener más sustancias volátiles.
El equipo estudió el zinc en una gran muestra de meteoritos de diferentes planetesimales. Luego rastrearon la llegada de diferentes tipos de zinc a lo largo de las decenas de millones de años que nuestro planeta acumuló material.
Descubrieron que los planetesimales fundidos constituían aproximadamente el 70% de la masa total de nuestro planeta, pero sólo proporcionaban alrededor del 10% de su contenido de zinc. Esto significa que el 90% del zinc de la Tierra proviene de planetesimales «no fundidos» que contienen mayores cantidades de volátiles intactos. La consecuencia es que estas rocas espaciales no fundidas también deben haber proporcionado muchas sustancias volátiles a la Tierra en formación.
«Sabemos que la distancia entre un planeta y su estrella es un factor determinante para establecer las condiciones necesarias para que ese planeta mantenga agua líquida en su superficie», añadió Martins. «Pero nuestros resultados muestran que no hay garantía de que los planetas contengan los materiales adecuados para tener suficiente agua y otros volátiles, independientemente de su estado físico».
La investigación llevada a cabo por Martins y sus colegas podría tener implicaciones mucho más allá de los confines de nuestro planeta, contribuyendo a la búsqueda en curso de vida en otros lugares del cosmos.
«Es probable que también se produzcan condiciones y procesos similares en otros sistemas planetarios jóvenes», concluyó Martins. «El papel que desempeñan estos diferentes materiales a la hora de proporcionar volátiles es algo que debemos tener en cuenta cuando busquemos planetas habitables en otros lugares».
La investigación del equipo fue publicada el viernes 11 de octubre en la revista. Avances científicos.