Connect with us

Horoscopo

«¿Chunky Dunk?» – La extraña verdad sobre el monstruo marino prehistórico acorazado de Cleveland

Published

on

«¿Chunky Dunk?»  – La extraña verdad sobre el monstruo marino prehistórico acorazado de Cleveland

Dunkleosteus terrelli fue un pez acorazado que vivió hace unos 360 millones de años durante la Era de Piscis (Período Devónico). Se pensaba que tenía hasta 30 pies de largo y que era el primer «superdepredador» vertebrado. Vivía en las aguas subtropicales poco profundas sobre lo que ahora es Cleveland cuando América del Norte estaba cerca de la latitud de Río de Janeiro. Crédito: Ilustración de Dunkleosteus por Russell Engelman/Universidad Case Western Reserve

El científico aplica nuevos cálculos para revelar detalles voluminosos y de reducción de personal sobre[{» attribute=»»>species from Devonian Period.

Approimately 360 million years ago, in the shallow subtropical waters above what is now the city of Cleveland, an armor-plated fish many believed to be up to 30 feet long ruled the seas.

The species Dunkleosteus terrelli was Earth’s first vertebrate “superpredator” and lived during the Age of Fishes (Devonian Period)—when North America was near the latitude of what is now Rio de Janeiro.

But in nearly 150 years of research since fossilized remains of the prehistoric big fish were discovered on the shores of Lake Erie in 1867, scientists may have made some incorrect assumptions about Dunkleosteus’ size and shark-like shape.

In research published this month, a Case Western Reserve University scientist suggests the length of this prehistoric predator may have been greatly exaggerated—that it was much shorter and chunkier.

Downsized Dunkleosteus

Graphical abstract showing the relative size of Dunkleosteus compared to a human figure–before and after the new calculations. Credit: Russell Engelman/Case Western Reserve University

Cleveland mascot and Ohio’s top fossil fish

Dunkleosteus is already a strange fish, but it turns out the old size estimates resulted in us overlooking a lot of features that made this fish even stranger, like a very tuna-like torso,” said Russell Engelman, a Case Western Reserve PhD student in biology and lead author on a study published in the journal Diversity in February. “Some colleagues have been calling it ‘Chunky Dunk’ or ‘Chunkleosteus’ after seeing my research.”

Engelman said he recognizes downsizing the iconic Dunkleosteus may not be welcome news because the big fish “is essentially Cleveland’s mascot when it comes to paleontology” (The species even had a Twitter account for a few years). As a native Clevelander, he said he originally had similar feelings.

Most research on Dunkleosteus is based on specimens in the Cleveland Museum of Natural History, which has the largest and highest quality collection of Dunkleosteus remains in the world. And its name honors both a former museum curator (David Dunkle) and a local business owner (Jay Terrell) who discovered the fossilized species.

Dunkleosteus is such a homegrown icon that in 2020, the Ohio General Assembly declared Dunkleosteus terrelli the state fossil fish.

Even so, little research has been done on the fish since the 1930s, Engelman said.

“Without reliable size estimates, not much could be said about Dunkleosteus scientifically beyond ‘look at the big, scary fish!’” Engelman said. “These length estimates were an example of something that just slipped by everyone’s notice because it was assumed this fish has been well-studied.”

Short head, short body

Most estimates of the species’ length weren’t based on hard evidence, Engelman said.

That’s because Dunkleosteus was a type of extinct fish called an arthrodire. Unlike modern fishes, arthrodires like Dunkleosteus had bony, armored heads but internal skeletons made of cartilage. This means only the heads of these animals were preserved as fossils, leaving the size and shape a mystery.

The new study proposes estimating the length based on the 24-inch-long head, minus the snout—considered a way to measure that’s consistent among groups of living fishes and smaller relatives of Dunkleosteus known from complete skeletons.

“The reasoning behind this study can be summed up in one simple observation,” Engelman said. “Short fish generally have short heads and long fish generally have long heads.”

Based on that method, Engelman concluded Dunkleosteus was only 11 to 13 feet long—much shorter than any researcher had proposed before.

‘Wrecking balls’ of the deep

Dunkleosteus has often been reconstructed assuming it had a body shape like a shark,” Engelman said.

But a shorter body and shape of the body armor also meant Dunkleosteus was likely much chunkier.

“An 11-foot Dunkleosteus is essentially the same weight as a 15-foot great white shark,” Engelman said. “These things were built like wrecking balls. The new proportions for Dunkleosteus may look goofy until you realize it has the same body shape as a tuna…and a mouth twice as large as a great white shark.”

These new size estimates also help put Dunkleosteus in a broader scientific context. Dunkleosteus is part of a larger evolutionary story, in which vertebrates went from small, unassuming bottom-dwellers to massive giants.

“Although the reduced sizes for Dunkleosteus may seem disappointing,” Engelman said, “it was still probably the biggest animal that existed on Earth up to that point in time. And these new estimates make it possible to do so many types of analyses on Dunkleosteus that it was thought would never be possible. This is the bitter pill that has to be swallowed, so that now we can get to the fun stuff.”

Patricia Princehouse, associate director of CWRU’s Institute for the Science of Origins said it was exciting to see the new work.

“This fresh take on the legendary Dunkleosteus ‘sea monster’ shows there’s still lots of brand-new breakthroughs waiting to be discovered in the world of paleontology, even with famous species,” Princehouse said. The multidisciplinary institute initiates and conducts scientific research in origins-related sciences and has promoted work undertaken by Engelman and other students.

Reference: “A Devonian Fish Tale: A New Method of Body Length Estimation Suggests Much Smaller Sizes for Dunkleosteus terrelli (Placodermi: Arthrodira)
by Russell K. Engelm, 21 February 2023, Diversity.
DOI: 10.3390/d15030318

Engelman conducted his research under advisor Darin Croft, professor of anatomy at the Case Western Reserve School of Medicine, who also advises students in biology in the College of Arts and Sciences.

READ  AlphaFold genera una vista 3D del universo proteico

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

JWST descubre objetos parecidos a planetas sin estrellas escondidos misteriosamente en Orión: ScienceAlert

Published

on

JWST descubre objetos parecidos a planetas sin estrellas escondidos misteriosamente en Orión: ScienceAlert

Las observaciones del JWST del núcleo de formación estelar de la Nebulosa de Orión nos han proporcionado algo que nunca habíamos visto antes.

Allí, en el Cúmulo del Trapecio, los científicos han descubierto docenas de objetos parecidos a planetas con aproximadamente la masa de Júpiter, no unidos a una estrella, desplazándose a través de la galaxia en pares gravitacionalmente unidos, como si fuera algo perfectamente normal.

Pero no es el caso. No se conoce ningún mecanismo de formación que pueda conducir a estas masas binarias, y mucho menos a 42 de ellas.

A medida que encontramos más y más mundos alienígenas en la Vía Láctea, resulta cada vez más claro que nuestra comprensión de cómo surgieron los planetas tiene serias lagunas. Entonces, qué son estos objetos y de dónde vienen podría ayudarnos a aprender más sobre cómo se formaron las estrellas y los planetas.

Los astrónomos Samuel Pearson Mark McCaughrean de la Agencia Espacial Europea los llamaron Objetos Binarios de Masa de Júpiter, o JuMBO, y los describió en un artículo preimpreso que fue sometido a Naturaleza.

El núcleo de Orión, visto a través del canal NIRCam de longitud de onda larga del JWST. (NASA, ESA, CSA/M. McCaughrean, S. Pearson)

Se cree que estos entornos de formación de estrellas podría ser examinado con lo que llamamos exoplanetas rebeldes: aquellos que se han desprendido de sus estrellas. De hecho, un gran número de estrellas muy cercanas entre sí pueden alterar los sistemas planetarios bebés de cada una. Las simulaciones sugieren que los exoplanetas no deseados podrían ser increíblemente comunes.

Además, la existencia de objetos de masa planetaria que flotan libremente en Orión no es una sorpresa. Los astrónomos han sido detectándolos durante décadasa una masa de aproximadamente tres veces la de Júpiter.

READ  El cráneo de un antiguo ancestro de mono sugiere que los humanos se originaron en Europa, no en África

Pero para objetos más pequeños que Orión, la detección plantea un enorme desafío. El fondo de Orión es muy brillante; y los objetos pequeños con masa planetaria son relativamente fríos y emiten la mayor parte de su luz en el infrarrojo térmico.

Esto sin embargo, Aquí es donde brilla JWST. Construido para detectar luz infrarroja, el poderoso telescopio espacial nos ha brindado las observaciones más detalladas de Orión hasta la fecha.

Entonces Pearson y McCaughrean fueron a buscar pequeñas cosas. Pero lo que encontraron desafió todas las expectativas.

«Hemos estado buscando estos objetos muy pequeños y los estamos encontrando. Los estamos encontrando tan pequeños como la masa de Júpiter, o incluso la mitad de la masa de Júpiter, flotando libremente, no unidos a una estrella», dijo McCaughrean. . Hannah Devlin dijo El guardián.

«La física dice que ni siquiera se pueden crear objetos tan pequeños. Queríamos ver si podemos romper la física. Y creo que lo hicimos, lo cual es bueno».

Los JuMBO tienen alrededor de un millón de años, con temperaturas que rondan los 1.000 Kelvin (unos 700 grados Celsius) y separaciones orbitales de entre 25 y 390 veces la distancia entre la Tierra y el Sol. El análisis de la tenue luz que desprenden revela notas de vapor de agua, monóxido de carbono y metano. Hasta ahora todo es normal para un bebé gigante gaseoso.

El problema con los JuMBO es el hecho de que vienen de dos en dos. Un exoplaneta solitario y rebelde que hace lo suyo es una cosa. Pero dos objetos de masa planetaria unidos gravitacionalmente son realmente difíciles de explicar.

READ  ¡Milagro! ¡Fotos de ángeles aparecieron en el suelo de Marte en Nochebuena! ESA imagen de un ángel de Navidad que aparece en la superficie de Marte te dejará hipnotizado | internacional
El cúmulo trapezoide. (NASA, ESA, CSA/M. McCaughrean, S. Pearson)

Verá, las estrellas se forman cuando un grupo de materia en una nube molecular colapsa bajo la influencia de la gravedad. A medida que giran, atraen más material de la nube que los rodea, lo que forma un disco que alimenta la estrella. Durante este proceso, el disco puede romperse, dando como resultado la formación de una segunda estrella; así nace una estrella binaria.

Pero el límite de masa inferior teórico para un objeto que se forma a través de este escenario de formación de colapso de nubes es de aproximadamente tres masas de Júpiter. Los objetos más pequeños, como los planetas, se forman en el disco de material que rodea la estrella.

Las simulaciones sugieren que estos planetas bebés pueden ser expulsados ​​de su sistema muy fácilmente, ya sea mediante interacciones planeta-planeta o interacciones estrella-estrella. Pero los mecanismos implicados en esta eyección no favorecen el mantenimiento de pares de planetas juntos.

Es posible que planetas aislados expulsados ​​se encuentren y queden unidos gravitacionalmente, pero esperamos que esto sea bastante raro. Detectar 42 de estos pares, como se señala en el artículo de Pearson y McCaughrean, sugiere que nos estamos perdiendo algo fundamental.

«Aún no está claro cómo pueden ser expulsados ​​simultáneamente pares de planetas jóvenes y permanecer unidos, aunque sea débilmente en separaciones relativamente grandes», escriben los investigadores en su artículo.

«Todo objetos de masa planetaria y los JuMBO que vemos en el cúmulo trapecio podrían resultar de una mezcla de estos dos escenarios «clásicos», aunque ambos tienen importantes salvedades, o quizás un mecanismo de formación nuevo y bastante distinto, como la fragmentación de un disco sin estrellas. , se requiere.»

READ  Puede transmitir sonido al vacío, pero no muy lejos.

El estudio que describe JuMBO está disponible en el servidor de preimpresión. arXiv.org.

Continue Reading

Horoscopo

Rompiendo la aproximación de Born-Oppenheimer: experimentos descubren un fenómeno cuántico teorizado durante mucho tiempo

Published

on

Rompiendo la aproximación de Born-Oppenheimer: experimentos descubren un fenómeno cuántico teorizado durante mucho tiempo

Una molécula que contiene dos átomos de platino absorbe un fotón y comienza a vibrar. La vibración permite que el giro electrónico de la molécula se invierta, lo que permite que el sistema cambie simultáneamente los estados electrónicos en un fenómeno llamado cruce entre sistemas. Crédito: Laboratorio Nacional Argonne

Láseres y rayos X ultrarrápidos han revelado el acoplamiento entre la dinámica electrónica y nuclear de las moléculas.

Hace casi un siglo, los físicos Max Born y J. Robert Oppenheimer desarrollaron una hipótesis sobre cómo funciona la mecánica cuántica dentro de las moléculas. Estas moléculas están formadas por sistemas complejos de núcleos y electrones. La aproximación de Born-Oppenheimer postula que los movimientos de los núcleos y los electrones dentro de una molécula ocurren de forma independiente y pueden tratarse por separado.

Este modelo funciona la gran mayoría de las veces, pero los científicos están poniendo a prueba sus límites. Recientemente, un equipo de científicos demostró el fracaso de esta hipótesis en escalas de tiempo muy rápidas, revelando una estrecha relación entre la dinámica de los núcleos y los electrones. Este descubrimiento podría influir en el diseño de moléculas útiles para la conversión de energía solar, la generación de energía, la ciencia de la información cuántica y más.

El equipo, compuesto por científicos del Laboratorio Nacional Argonne del Departamento de Energía de EE. UU. (DOE), la Universidad Northwestern, la Universidad Estatal de Carolina del Norte y la Universidad de Washington, publicó recientemente su descubrimiento en dos artículos relacionados en Naturaleza Y Edición internacional Angewandte Chemie.

«Nuestro trabajo revela la interacción entre la dinámica del espín de los electrones y la dinámica vibratoria de los núcleos de las moléculas en escalas de tiempo ultrarrápidas», dijo Shahnawaz Rafiq, investigador asociado de Northwestern University y primer autor de Naturaleza papel. «Estas propiedades no pueden tratarse de forma independiente: se mezclan y afectan la dinámica electrónica de formas complejas».

Un fenómeno llamado efecto vibrónico de espín ocurre cuando los cambios en el movimiento de los núcleos de una molécula afectan el movimiento de sus electrones. Cuando los núcleos vibran dentro de una molécula, ya sea debido a su energía intrínseca o debido a estímulos externos, como la luz, estas vibraciones pueden afectar el movimiento de sus electrones, lo que a su vez puede cambiar el espín de la molécula, una propiedad de la mecánica cuántica vinculada al magnetismo.

En un proceso llamado cruce entre sistemas, una molécula excitada o átomo cambia su estado electrónico invirtiendo la orientación de su espín electrónico. El cruce entre sistemas juega un papel importante en muchos procesos químicos, incluidos los de dispositivos fotovoltaicos, fotocatálisis e incluso animales bioluminiscentes. Para que este cruce sea posible, se requieren condiciones específicas y diferencias de energía entre los estados electrónicos involucrados.

Desde la década de 1960, los científicos han planteado la hipótesis de que el efecto vibrónico de espín podría desempeñar un papel en el cruce entre sistemas, pero observar directamente el fenómeno ha resultado difícil porque implica medir cambios en los estados electrónicos, vibratorios y de espín en objetos muy específicos. tiempos de respuesta rápidos.

“Usamos pulsos de láser ultracortos (hasta siete femtosegundos, o siete millonésimas de milmillonésima de segundo) para rastrear el movimiento de núcleos y electrones en tiempo real, lo que mostró cómo el efecto vibrónico del espín puede conducir al cruce entre sistemas. dijo Lin Chen, miembro distinguido de Argonne, profesor de química en la Universidad Northwestern y coautor correspondiente de ambos estudios. «Comprender la interacción entre el efecto vibrónico de espín y el cruce entre sistemas podría conducir a nuevas formas de controlar y explotar las propiedades electrónicas y de espín de las moléculas».

El equipo estudió cuatro sistemas moleculares únicos diseñados por Félix Castellano, profesor de Universidad Estatal de Carolina del Norte y coautor correspondiente de ambos estudios. Cada uno de los sistemas es similar al otro, pero contienen diferencias controladas y conocidas en sus estructuras. Esto permitió al equipo acceder a efectos cruzados entre sistemas y dinámicas vibratorias ligeramente diferentes para obtener una imagen más completa de la relación.

«Los cambios geométricos que diseñamos en estos sistemas provocaron que los puntos de cruce entre los estados excitados electrónicos que interactúan aparecieran con energías ligeramente diferentes y en diferentes condiciones», dijo Castellano. «Esto proporciona información sobre cómo ajustar y diseñar materiales para mejorar este cruce».

Inducido por el movimiento vibratorio, el efecto vibrónico de espín en las moléculas alteró el panorama energético dentro de las moléculas, aumentando la probabilidad y la tasa de cruce entre sistemas. El equipo también descubrió estados electrónicos intermedios clave que eran parte integral del funcionamiento del efecto vibrónico del espín.

Los resultados fueron predichos y reforzados por cálculos de dinámica cuántica realizados por Xiaosong Li, profesor de química de la Universidad de Washington. Universidad de Washington y científico de laboratorio en el Laboratorio Nacional del Noroeste del Pacífico del DOE. «Estos experimentos mostraron una química muy clara y hermosa en tiempo real que coincidía con nuestras predicciones», dijo Li, autor del estudio publicado en Edición internacional Angewandte Chemie.

Los profundos conocimientos revelados por los experimentos representan un paso adelante en el diseño de moléculas capaces de explotar esta poderosa relación mecánico-cuántica. Esto podría resultar particularmente útil para células solares, mejores pantallas electrónicas e incluso tratamientos médicos que dependen de interacciones entre la luz y la materia.

Las referencias:

“La coherencia espín-vibrónica impulsa la conversión singlete-triplete” por Shahnawaz Rafiq, Nicholas P. Weingartz, Sarah Kromer, Felix N. Castellano y Lin X. Chen, 19 de julio de 2023, Naturaleza.
DOI: 10.1038/s41586-023-06233-y

“Revelando trayectorias de estados excitados en superficies de energía potencial con resolución atómica en tiempo real” por Denis Leshchev, Andrew JS Valentine, Pyosang Kim, Alexis W. Mills, Subhangi Roy, Arnab Chakraborty, Elisa Biasin, Kristoffer Haldrup, Darren J. Hsu, Matthew S. Kirschner, Dolev Rimmerman, Matthieu Chollet, J. Michael Glownia, Tim B. van Driel, Felix N. Castellano, Xiaosong Li y Lin X. Chen, 28 de abril de 2023. Angewandte Chemie Edición Internacional.
DOI: 10.1002/anie.202304615

Ambos estudios fueron apoyados por la Oficina de Ciencias del DOE. EL Naturaleza El estudio fue financiado en parte por la Fundación Nacional de Ciencias. Experiencias en el Angewandte Chemie Edición Internacional se llevaron a cabo en Linac Coherent Light Source en el Laboratorio Nacional de Aceleradores SLAC del DOE. Otros autores sobre el Naturaleza El estudio incluye a Nicholas P. Weingartz y Sarah Kromer. Otros autores del artículo publicado en Angewandte Chemie Edición Internacional incluyen a Denis Leshchev, Andrew JS Valentine, Pyosang Kim, Alexis W. Mills, Subhangi Roy, Arnab Chakraborty, Elisa Biasin, Kristoffer Haldrup, Darren J. Hsu, Matthew S. Kirschner, Dolev Rimmerman, Matthieu Chollet, J. Michael Glownia y Tim B. van Driel.

READ  La NASA se prepara para "dar el paso" y explorar Venus con DAVINCI
Continue Reading

Horoscopo

La NASA extiende la misión New Horizons hasta finales de la década de 2020

Published

on

La NASA extiende la misión New Horizons hasta finales de la década de 2020

La nave espacial New Horizons de la NASA podrá seguir explorando sus exóticos alrededores durante al menos cinco años.

La agencia anunció el viernes (29 de septiembre) que mantendría encendidas las luces de New Horizons mientras volaba sobre el Cinturón de Kuiper, el vasto anillo de cuerpos helados más allá de la órbita de Neptuno.

Continue Reading

Trending