Connect with us


Acelerando la búsqueda de materia oscura



Los detectores del Gran Colisionador de Hadrones comenzaron a registrar colisiones de alta energía a la energía sin precedentes de 13,6 TeV.

El Gran Colisionador de Hadrones vuelve a proporcionar colisiones de protones a los experimentos, esta vez a una energía sin precedentes de 13,6 TeV, lo que marca el comienzo del tercer conjunto de datos del acelerador para la física.

Una ronda de aplausos estalló en[{» attribute=»»>CERN Control Center on July 5, 2022, at 4.47 p.m. CEST when the Large Hadron Collider (LHC) detectors switched on all subsystems and started recording high-energy collisions at the unprecedented energy of 13.6 TeV, ushering in a new physics season. This accomplishment was made possible thanks to the operators who had worked around the clock since the restart of the LHC in April to ensure the smooth beginning of these collisions with higher-intensity beams and boosted energy.

Following over three years of upgrade and maintenance work, the LHC is now set to run for close to four years at the record energy of 13.6 trillion electronvolts (TeV), providing increased precision and discovery potential. Many factors point to a promising physics season that will further expand the already very diverse LHC physics program: increased collision rates, higher collision energy, upgraded data readout and selection systems, improved detector systems and computing infrastructure.

CERN Control Center LHC Restart

Celebrations at the CERN control centre (CCC) to mark the start of LHC Run 3. Credit: CERN)

A new period of data taking began on Tuesday, July 5 for the experiments at the Large Hadron Collider (LHC), the world’s most powerful particle accelerator, after more than three years of upgrade and maintenance work. Beams have already been circulating in CERN’s accelerator complex since April, with the LHC machine and its injectors being recommissioned to operate with new higher-intensity beams and increased energy. However, now the LHC operators have announced “stable beams,” the condition allowing the experiments to switch on all their subsystems and begin taking the data that will be used for physics analysis. The LHC will run around the clock for close to four years at a record energy of 13.6 trillion electronvolts (TeV), providing greater precision and discovery potential than ever before.

“We will be focusing the proton beams at the interaction points to less than 10 micron beam size, to increase the collision rate. Compared to Run 1, in which the Higgs was discovered with 12 inverse femtobarns, now in Run 3 we will be delivering 280 inverse femtobarns. This is a significant increase, paving the way for new discoveries,” says Director for Accelerators and Technology Mike Lamont.

3D Cut of LHC dipole

3D cut of the Large Hadron Collider dipole. Credit: CERN)

The four big LHC experiments have performed major upgrades to their data readout and selection systems, with new detector systems and computing infrastructure. The changes will allow them to collect significantly larger data samples, with data of higher quality than in previous runs. The ATLAS and CMS detectors expect to record more collisions during Run 3 than in the two previous runs combined. The LHCb experiment underwent a complete revamp and looks to increase its data-taking rate by a factor of ten, while ALICE is aiming at a staggering fifty-fold increase in the number of recorded collisions.

With the increased data samples and higher collision energy, Run 3 will further expand the already very diverse LHC physics program. Scientists at the experiments will probe the nature of the Higgs boson with unprecedented precision and in new channels. They may observe previously inaccessible processes, and will be able to improve the measurement precision of numerous known processes addressing fundamental questions, such as the origin of the matter–antimatter asymmetry in the universe. Scientists will study the properties of matter under extreme temperature and density, and will also be searching for candidates for dark matter and for other new phenomena, either through direct searches or – indirectly – through precise measurements of properties of known particles.

“We’re looking forward to measurements of the Higgs boson decay to second-generation particles such as muons. This would be an entirely new result in the Higgs boson saga, confirming for the first time that second-generation particles also get mass through the Higgs mechanism,” says CERN theorist Michelangelo Mangano.

“We will measure the strengths of the Higgs boson interactions with matter and force particles to unprecedented precision, and we will further our searches for Higgs boson decays to dark matter particles as well as searches for additional Higgs bosons,” says Andreas Hoecker, spokesperson of the ATLAS collaboration. “It is not at all clear whether the Higgs mechanism realized in nature is the minimal one featuring only a single Higgs particle.”

A closely watched topic will be the studies of a class of rare processes in which an unexpected difference (lepton flavor asymmetry) between electrons and their cousin particles, muons, was studied by the LHCb experiment in the data from previous LHC runs. “Data acquired during Run 3 with our brand new detector will allow us to improve the precision by a factor of two and to confirm or exclude possible deviations from lepton flavor universality,” says Chris Parkes, spokesperson of the LHCb collaboration. Theories explaining the anomalies observed by LHCb typically also predict new effects in different processes. These will be the target of specific studies performed by ATLAS and CMS. “This complementary approach is essential; if we’re able to confirm new effects in this way it will be a major discovery in particle physics,” says Luca Malgeri, spokesperson of the CMS collaboration.

The heavy-ion collision program will allow the investigation of quark–gluon plasma (QGP) – a state of matter that existed in the first 10 microseconds after the Big Bang – with unprecedented accuracy. “We expect to be moving from a phase where we observed many interesting properties of the quark–gluon plasma to a phase in which we precisely quantify those properties and connect them to the dynamics of its constituents,” says Luciano Musa, spokesperson of the ALICE collaboration. In addition to the main lead–lead runs, a short period with oxygen collisions will be included for the first time, with the goal of exploring the emergence of QGP-like effects in small colliding systems.

The smallest experiments at the LHC – TOTEM, LHCf, MoEDAL, with its entirely new subdetector MAPP, and the recently installed FASER and [email protected] – también están listos para explorar fenómenos dentro y más allá del Modelo Estándar, desde monopolos magnéticos hasta neutrinos y rayos cósmicos.

READ  Space Coast ocupó el puesto n. ° 1 en destinos de pesca para el Día de Acción de Gracias en los Estados Unidos

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada.


Resuelve un acertijo matemático en quarks y gluones en materia nuclear




Una caricatura del plasma de quarks y gluones (pequeños círculos rojos, verdes y azules) producido durante una colisión relativista de iones pesados ​​entre dos núcleos pesados ​​(círculos blancos). La colisión produce un quark pesado (Q rojo) y un par quark-antiquark pesado (QO verde). Crédito: Imagen cortesía de Bruno Scheihing-Hitschfeld y Xiaojun Yao

Los científicos han dado un importante paso adelante en el estudio de las propiedades de los quarks y gluones, las partículas que forman los núcleos atómicos, al resolver un problema de larga data con un método de cálculo teórico conocido como «calibre axial».[{» attribute=»»>MIT and University of Washington researchers found that the method had mistakenly suggested two properties of quark-gluon plasma were identical. They also made a prediction on gluon distribution measurement, set to be tested in future experiments with the Electron-Ion Collider.

The Science

The building blocks of atomic nuclei are protons and neutrons, which are themselves made of even more fundamental particles: quarks and gluons. These particles interact via the “strong” force, one of the four fundamental forces of nature. They make up the nuclei at the heart of every atom. They also make up forms of hot or dense nuclear matter that exhibit exotic properties. Scientists study the properties of hot and cold nuclear matter in relativistic heavy ion collision experiments and will continue to do so using the future Electron-Ion Collider. The ultimate goal is to understand how complex forms of matter emerge from elementary particles affected by strong forces.

The Impact

Theoretical calculations involving the strong force are complex. One aspect of this complexity arises because there are many ways to perform these calculations. Scientists refer to some of these as “gauge choices.” All gauge choices should produce the same result for the calculation of any quantity that can be measured in an experiment. However, one particular choice, called “axial gauge,” has puzzled scientists for years because of difficulties in obtaining consistent results upon making this choice. This recent study resolves this puzzle and paves the way for reliable calculations of hot and cold nuclear matter properties that can be tested in current and future experiments.


The exotic form of nuclear matter that physicists study in relativistic heavy ion collisions is called the quark-gluon plasma (QGP). This form of matter existed in the early universe. Physicists explore its properties in heavy ion collision experiments by recreating the extremely high temperatures last seen microseconds after the Big Bang. By analyzing experimental data from the collisions and comparing them with theoretical calculations, physicists can ascertain various properties of the QGP. Using a calculation method called “axial gauge” had previously seemed to imply that two QGP properties that describe how heavy quarks move through the QGP were the same.

Researchers at the Massachusetts Institute of Technology and the University of Washington have now found this implication to be incorrect. The study also carefully analyzed the subtle conditions for when axial gauge can be employed and explained why the two properties are different. Finally, it showed that two distinct methods for measuring how gluons are distributed inside nuclei must yield different results. Gluons are the particles that carry the strong force, This prediction will be tested at the future Electron-Ion Collider.

Reference: “Gauge Invariance of Non-Abelian Field Strength Correlators: The Axial Gauge Puzzle” by Bruno Scheihing-Hitschfeld and Xiaojun Yao, 2 February 2023, Physical Review Letters.
DOI: 10.1103/PhysRevLett.130.052302

This work is supported by the Department of Energy Office of Science, Office of Nuclear Physics and by the Office of Science, Office of Nuclear Physics, InQubator for Quantum Simulation (IQuS).

READ  Space Coast ocupó el puesto n. ° 1 en destinos de pesca para el Día de Acción de Gracias en los Estados Unidos
Continue Reading


Los matemáticos ponen fin a la búsqueda de décadas para encontrar la escurridiza forma del ‘vampiro Einstein’



¿Qué tiene 14 lados, está lleno de curvas y puede cubrir perfectamente una superficie sin huecos ni superposiciones? No es un acertijo, es un «vampiro de Einstein».

En marzo, un técnico de impresión jubilado llamado David Smith se encontró con un notable descubrimiento en el mundo de la matemáticas. Encontró un Forma de 13 lados que podría cubrir completamente una superficie sin repetirla. La forma, apodada «el sombrero» por su forma holgadamente afieltrada, fue la culminación de décadas de búsqueda por parte de matemáticos de todo el mundo.

Desde 1961 los matemáticos se preguntaban si tal forma pudiera existir. Al principio, los matemáticos encontraron un conjunto de 20 426 formas que podían encajar mientras creaban un patrón que nunca se repite (a diferencia de las baldosas en el piso de una cocina, que crean un patrón repetitivo). Eventualmente, los matemáticos encontraron un conjunto de 104 formas que podían crear ese mosaico sin repetición.

Las formas del medio y la derecha son ejemplos de «Spectra» — formas de 14 lados que se pueden colocar en mosaico sin fin sin crear un patrón repetitivo. (Crédito de la imagen: Smith et al.)
Continue Reading


La sonda de asteroides Psyche de la NASA en camino para su lanzamiento en octubre después de un retraso



La misión del asteroide Psyche de la NASA está en camino de cumplir su nuevo objetivo de lanzamiento de octubre de 2023, según descubrió una revisión independiente.

Psyche estaba programado para lanzarse sobre un cohete SpaceX Falcon Heavy en octubre de 2022 para explorar el intrigante asteroide metálico que dio nombre a la misión. Pero el verano pasado, la NASA pospuso el despegue debido a problemas con el software de vuelo de la nave espacial.

Continue Reading