Connect with us

Horoscopo

Un nuevo invento que cambia de color permite «viajar en el tiempo» en las células

Published

on

Un nuevo invento que cambia de color permite «viajar en el tiempo» en las células

Científicos del Trinity College Dublin y el Royal College of Surgeons de Irlanda han desarrollado tintes fluorescentes innovadores que cambian de color para visualizar diferentes entornos biológicos utilizando un solo tinte. Estos tintes, capaces de «encenderse» y «apagarse» dependiendo de su ubicación dentro de las estructuras celulares, permiten obtener imágenes de procesos celulares en tiempo real y con alto contraste. Este avance, publicado en la revista Chem, allana el camino para el progreso en los campos de la biodetección, la obtención de imágenes de administración de fármacos y el estudio de la dinámica celular. La investigación se beneficia de la colaboración internacional y de una importante financiación de organizaciones de investigación irlandesas, lo que promete una amplia gama de aplicaciones en biología y medicina. Crédito: SciTechDaily.com

Investigadores del Trinity College Dublin, en colaboración con el Royal College of Surgeons de Irlanda (RCSI), han desarrollado tintes fluorescentes especiales que cambian de color que, por primera vez, pueden utilizarse para visualizar simultáneamente múltiples entornos biológicos distintos utilizando un solo singular. teñir.

Cuando estos tintes se encapsulan en contenedores de entrega, como los utilizados en tecnologías como COVID-19 En las vacunas, se “iluminan” y emiten luz mediante un proceso llamado emisión inducida por agregación (AIE). Poco después de su introducción en las células, su luz «se apaga» antes de «volverse a encender» una vez que las células transportan los tintes en gotitas de lípidos celulares.

Técnicas de imagen avanzadas

Debido a que la luz que proviene del interior de las células es de un color diferente y se produce en una ventana de tiempo diferente a la luz que proviene del mismo tinte dentro de los vasos sanguíneos, los investigadores pueden utilizar una técnica llamada «Imagen de vida útil de fluorescencia» (FLIM) para distinguir entre los dos entornos en condiciones reales. tiempo.

El trabajo fue publicado recientemente en la principal revista internacional, Químico. El primer autor, el Dr. Adam Henwood, investigador principal de la Facultad de Química y del Trinity Biomedical Sciences Institute (TBSI), trabajó en este diseño con la estudiante de doctorado Connie Sigurvinsson.

READ  SpaceX listo para el tercer lanzamiento consecutivo de Starlink [webcast]

El Dr. Henwood explicó: “La bioimagen se basa en tintes ‘encendidos/apagados’ en los que los tintes sólo emiten luz bajo un conjunto de condiciones, pero por lo demás se apagan. Esto es extremadamente útil, pero significa que solo puedes mirar un lugar a la vez bajo el microscopio. Lo interesante de este trabajo es que nuestros tintes alcanzan un punto óptimo que les otorga propiedades distintivas de encendido/apagado/encendido y, lo que es más importante, podemos observar y diferenciar entre estos diferentes estados «encendidos».

“Así que ambos vemos más y mejor que antes. Para hacer esto, cronometramos el tiempo que tarda la luz de nuestras muestras en llegar al microscopio: la luz de los contenedores de entrega tarda un poco más que la luz del interior de las células. Al recopilar suficientes señales de luz, podemos utilizar esta información para crear rápidamente imágenes 3D precisas de los dos entornos de tinte diferentes. Las diferencias temporales son pequeñas (unas pocas milmillonésimas de segundo en ambos casos), pero nuestro método es lo suficientemente sensible como para capturarlas.

Esta cualidad única significa que los tintes podrían tener una amplia gama de aplicaciones y, por ejemplo, tener el potencial de revolucionar los enfoques de biodetección e imágenes.

Cambios de luminiscencia del mismo tinte pasando de disolvente orgánico puro a agua.

Cambios en la luminiscencia del mismo tinte, pasando del disolvente orgánico puro, izquierda, al agua, derecha. Crédito: Dr. Adam Henwood, Trinity College Dublin

Debido a que estos tintes pueden ayudar a los científicos a mapear estructuras complejas dentro de las células vivas con un contraste y especificidad tan altos, podrían ayudar a comprender cómo las células absorben y metabolizan los medicamentos o permitir a los científicos diseñar y realizar una serie de nuevos experimentos para comprender mejor. el complejo funcionamiento interno de las células y su muy importante maquinaria bioquímica.

En el artículo publicado en la revista, los científicos se centraron en el uso de tintes para obtener imágenes de gotitas de lípidos (grasa) celulares, que son un ejemplo de «orgánulos» importantes que forman las células vivas de la mayoría de los organismos complejos (como nosotros los humanos).

READ  Cómo levantar la mano en un espacio de Twitter

Ahora se cree que las gotitas de lípidos, que alguna vez se consideraron simples «depósitos de grasa», desempeñan un papel importante en la regulación del metabolismo celular, coordinando la absorción, distribución, almacenamiento y utilización de los lípidos dentro de las células. Debido a esta creciente comprensión de su importancia y al hecho de que los cambios repentinos en su actividad a menudo indican estrés celular, proporcionan un escenario de prueba útil para los tintes. Una posible vía para futuras investigaciones es ver si el equipo puede apuntar a otros orgánulos celulares importantes con sus tintes.

Thorfinnur Gunnlaugsson, profesor de química en la Trinity School of Chemistry y con base en TBSI, es el autor principal del artículo. Dijo:

“Poder monitorear la función celular o el flujo de moléculas o candidatos a fármacos dentro de las células mediante la observación de diferentes colores de emisión de fluorescencia es extremadamente atractivo. El gran avance aquí es que podemos resolver y utilizar la diferencia en sus tiempos de vida de fluorescencia para identificar estas mismas sondas en diferentes entornos celulares de forma rápida y precisa, permitiéndonos literalmente mapear su colorido «viaje en el tiempo» dentro de las células.

“Sin embargo, lo más interesante es que este fenómeno no se aplica a las imágenes celulares. Estos resultados abren nuevas posibilidades en todo, desde el estudio de la biología química, como hemos mostrado aquí, hasta muchas otras aplicaciones médicas e incluso en la generación de nuevos materiales funcionales para su uso más allá de la biología. En principio, cualquier material molecular o nanomaterial que requiera un movimiento molecular controlado puede mapearse y refinarse utilizando nuestro nuevo método.

Aplicaciones potenciales y direcciones futuras.

Y aquí es precisamente donde los autores pretenden lanzar una amplia red. Visualizan muchas posibilidades nuevas para estos tintes, y señalan que su excepcional sensibilidad es de interés para desarrollar sensores para detectar contaminantes ambientales peligrosos o para utilizar sus propiedades luminosas y de emisión de luz para impulsar transformaciones químicas análogas a las de la naturaleza. fotosíntesis.

READ  El tercer intento de la NASA en la prueba de la misión lunar crucial se pospuso hasta el martes debido al mal funcionamiento de la válvula

La investigación tiene una dimensión tanto internacional (están representados ocho países) como irlandesa, y los principales organismos de financiación de este último, el Consejo Irlandés de Investigación (IRC) y la Fundación Científica de Irlanda, desempeñan ambos un papel clave de apoyo financiero. El más notable es el Centro de Investigación Farmacéutica de SFI, SSPC, que financió principalmente el trabajo, junto con contribuciones del Centro SFI AMBER y el Centro EPSRC-SFI con sede en AMBER para el programa de formación doctoral.

El profesor Damien Thompson, catedrático de Física de la Universidad de Limerick y director del SSPC, dijo: “Como centro seguimos avanzando y creando nuevos conocimientos en la interfaz de los materiales y la biología. Este trabajo colaborativo entre dos de nuestros investigadores principales en Trinity y RCSI destaca el poder de la ciencia básica para impulsar la innovación en medicina. Cuanto más de cerca observemos la interfaz molécula-célula y, lo que es más importante, cuanto mejor podamos ver, en tiempo real, cómo las moléculas se difunden de un lugar a otro dentro de las nanomáquinas celulares, más nos acercaremos a la realización del sueño de comprensión de Richard Feynman. todo lo que hacen los seres vivos gracias a los movimientos y sacudidas de los átomos.

“Pero sólo recientemente los investigadores han tenido suficientes recursos experimentales y computacionales para rastrear estos movimientos y vibraciones en entornos biológicos complejos. Este nuevo e interesante trabajo demuestra imágenes más específicas y de alto contraste de la dinámica subcelular, lo que a su vez permitirá a los investigadores desarrollar formulaciones de fármacos más eficaces con efectos secundarios reducidos.

El profesor Donal O’Shea, que supervisó la investigación, es un experto en imágenes celulares que trabaja en el Departamento de Química y en el RCSI Super-Resolution Imaging Consortium (financiado por Science Foundation Ireland, SFI). Añadió: “Nuestro uso de FLIM para rastrear las interacciones dinámicas de AIE con células vivas es un enfoque que puede tener una amplia aplicabilidad para otros sistemas de fluoróforos, permitiendo adquirir información que antes estaba oculta. »

Referencia: “Imágenes de fluorescencia resueltas en el tiempo con nanopartículas AIE que cambian de color y “encendido/apagado”” por Adam F. Henwood, Niamh Curtin, Sandra Estalayo-Adrián, Aramballi J. Savyasachi, Tómas A. Gudmundsson, June I. Lovitt, L. Constance Sigurvinsson, Hannah L. Dalton, Chris S. Hawes, Denis Jacquemin, Donal F. O’Shea y Thorfinnur Gunnlaugsson, 1 de diciembre de 2023. Química.
DOI: 10.1016/j.chempr.2023.10.001

El estudio fue financiado por el Consejo Irlandés de Investigación y la Fundación Científica de Irlanda.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

La misteriosa luna de Júpiter, Amaltea, ha sido vista pasando por la Gran Mancha Roja (foto)

Published

on

La misteriosa luna de Júpiter, Amaltea, ha sido vista pasando por la Gran Mancha Roja (foto)

La nave espacial Juno de la NASA ha detectado la elusiva quinta luna de Júpiter transitando por la Gran Mancha Roja del planeta gigante, brindando a los astrónomos una vista poco común de este pequeño pero intrigante satélite natural.

JúpiterLas lunas más famosas de la astronáutica son sus cuatro satélites galileanos: yo, Europa, Ganímedes Y Calisto, cada uno de los cuales tiene varios miles de kilómetros de ancho. La quinta luna de Júpiter descubierta, y la quinta más grande de las 95 lunas conocidas del planeta, es Amaltea. Fue descubierto en 1892 por Edward Emerson Barnard, un astrónomo estadounidense que fue un destacado observador visual. También descubrió la estrella de Barnard, así como una gran cantidad de objetos oscuros. nebulosas.

Continue Reading

Horoscopo

Mapa cerebral en 3D de 1.400 terabytes de gran detalle

Published

on

Mapa cerebral en 3D de 1.400 terabytes de gran detalle

Por

Seis capas de neuronas excitadoras codificadas por colores según su profundidad. Crédito: Google Research y Lichtman Lab

Un esfuerzo de colaboración entre Harvard y Google ha dado lugar a un gran avance en la ciencia del cerebro, al producir un mapa 3D completo de un pequeño segmento del cerebro humano, revelando interacciones neuronales complejas y sentando las bases para mapear un cerebro de ratón completo.

Un milímetro cúbico de tejido cerebral puede no parecer mucho. Pero considerando que este pequeño cuadrado contiene 57.000 células, 230 milímetros de vasos sanguíneos y 150 millones de sinapsis, lo que representa 1.400 terabytes de datos, los investigadores de Harvard y Google acaban de lograr algo enorme.

Un equipo de Harvard dirigido por Jeff Lichtman, profesor Jeremy R. Knowles de biología molecular y celular y recién nombrado decano de ciencia, co-creó con investigadores de Google la reconstrucción 3D con resolución sináptica más grande de un fragmento de cerebro humano hasta el día de hoy. mostrando con gran detalle cada célula y su red de conexiones neuronales en una porción de la corteza temporal humana de aproximadamente la mitad del tamaño de un grano de arroz.

Avances tecnológicos en neurociencia

La impresionante hazaña, publicada en la revista Ciencia, es el último de una colaboración de casi 10 años con científicos de Google Research, que combinan imágenes de microscopía electrónica de Lichtman con algoritmos de inteligencia artificial para codificar por colores y reconstruir el cableado extremadamente complejo del cerebro de los mamíferos. Los tres primeros coautores del artículo son Alexander Shapson-Coe, ex investigador postdoctoral en Harvard; Michał Januszewski de Google Research y Daniel Berger, investigador postdoctoral en Harvard.

READ  Intento de vuelo de la embarcación según lo programado para el martes por la tarde.

El objetivo final de la colaboración, apoyada por la Iniciativa BRAIN de los Institutos Nacionales de SaludImplica crear un mapa de alta resolución del cableado neuronal completo del cerebro de un ratón, lo que implicaría aproximadamente 1.000 veces la cantidad de datos que acaban de producir a partir del fragmento de 1 milímetro cúbico de la corteza humana.

Información del último mapa cerebral

«La palabra 'fragmento' es irónica», dijo Lichtman. “Un terabyte es, para la mayoría de la gente, gigantesco, pero un trozo de cerebro humano –sólo un pequeño trozo de cerebro humano– sigue siendo miles de terabytes”.

El último mapa publicado en Science contiene detalles nunca antes vistos sobre la estructura del cerebro, incluido un raro pero poderoso conjunto de axones conectados por hasta 50 sinapsis. El equipo también notó rarezas en el tejido, como una pequeña cantidad de axones que forman grandes verticilos. Dado que su muestra fue tomada de un paciente epiléptico, no saben si estas formaciones inusuales son patológicas o simplemente raras.

El campo de la conectividad

El campo de Lichtman es la «conectómica», que, de forma análoga a la genómica, busca crear catálogos completos de la estructura del cerebro, hasta las células individuales y el cableado. Estos mapas completos abrirían el camino a nuevos conocimientos sobre las funciones y enfermedades del cerebro, sobre las que los científicos todavía saben muy poco.

Los algoritmos de inteligencia artificial de última generación de Google permiten la reconstrucción y el mapeo del tejido cerebral en tres dimensiones. El equipo también desarrolló un conjunto de herramientas disponibles públicamente que los investigadores pueden utilizar para examinar y anotar el conectoma.

READ  Rusia arrancará gran parte de la Estación Espacial Internacional

Direcciones futuras

«Dada la enorme inversión que se hizo en este proyecto, era importante presentar los resultados de una manera que ahora todos puedan beneficiarse de ellos», dijo Viren Jain, colaborador de Google Research.

Luego, el equipo abordará la formación del hipocampo del ratón, importante para la neurociencia debido a su papel en la memoria y las enfermedades neurológicas.

Referencia: “Un fragmento de petavoxel de la corteza cerebral humana reconstruido en la nanoescala resolución » por Alexander Shapson-Coe, Michał Januszewski, Daniel R. Berger, Art Pope, Yuelong Wu, Tim Blakely, Richard L. Schalek, Peter H. Li, Shuohong Wang, Jeremy Maitin-Shepard, Neha Karlupia, Sven Dorkenwald, Evelina Sjostedt, Laramie Leavitt, Dongil Lee, Jakob Troidl, Forrest Collman, Luke Bailey, Angerica Fitzmaurice, Rohin Kar, Benjamin Field, Hank Wu, Julian Wagner-Carena, David Aley, Joanna Lau, Zudi Lin, Donglai Wei, Hanspeter Pfister, Adi Peleg, Viren Jain y Jeff W. Lichtman, 10 de mayo de 2024, Ciencia.
DOI: 10.1126/ciencia.adk4858

Continue Reading

Horoscopo

El próximo lanzamiento de la nave espacial SpaceX 'probablemente en 3 a 5 semanas', dice Elon Musk

Published

on

El próximo lanzamiento de la nave espacial SpaceX 'probablemente en 3 a 5 semanas', dice Elon Musk

Probablemente todavía estemos a un mes del próximo lanzamiento del megacohete Starship de SpaceX.

Esta fue la línea de tiempo propuesta por Elon Musk en un publicar en este fin de semana, diciendo que el próximo vuelo de prueba de Starship está «probablemente dentro de 3 a 5 semanas». “El objetivo es que el barco supere el nivel máximo de calefacción, o al menos más que la última vez”, añadió el empresario multimillonario.

Continue Reading

Trending