Connect with us

Horoscopo

El entrelazamiento cuántico ahora se ha observado directamente a escala macroscópica: ScienceAlert

Published

on

El entrelazamiento cuántico ahora se ha observado directamente a escala macroscópica: ScienceAlert

El entrelazamiento cuántico es la unión de dos partículas u objetos, aunque puedan estar muy separados: sus propiedades respectivas están vinculadas de una manera que no es posible según las reglas de la física clásica.

Es un fenómeno extraño que Einstein describe como «acción aterradora remota«, pero su extrañeza es lo que lo hace tan fascinante para los científicos. En un estudiar 2021cuántico enredo fue observado directamente y registrado en una escala macroscópica, una escala mucho más grande que las partículas subatómicas normalmente asociadas con el enredo.

Las dimensiones involucradas son aún muy pequeñas desde nuestro punto de vista: los experimentos involucraron dos pequeños tambores de aluminio de una quinta parte del ancho de un cabello humano, pero en el ámbito de la física cuántica son absolutamente enormes.

Tambores mecánicos macroscópicos. (J.Teufel/NIST)

“Si analizas los datos de posición e impulso de los dos tambores de forma independiente, cada uno de ellos suena simplemente genial”, dice el físico John Teufeldel Instituto Nacional de Estándares y Tecnología (NIST) en los Estados Unidos el año pasado.

«Pero al mirarlos juntos, podemos ver que lo que parece el movimiento aleatorio de un tambor está fuertemente correlacionado con el otro, de una manera que solo es posible mediante entrelazamiento cuántico

Aunque no hay nada que diga que el entrelazamiento cuántico no puede ocurrir con objetos macroscópicos, anteriormente se pensaba que los efectos no se notaban a escalas más grandes, o tal vez la escala macroscópica estaba gobernada por otro conjunto de reglas.

Investigaciones recientes sugieren que ese no es el caso. De hecho, las mismas reglas cuánticas se aplican aquí también y también se pueden observar. Los investigadores hicieron vibrar las diminutas membranas del tambor usando fotones de microondas y las mantuvieron en un estado sincronizado en términos de posición y velocidad.

READ  Así se vería el cielo si pudiéramos ver los rayos gamma (video)

Para evitar interferencias externas, un problema común con los estados cuánticos, los tambores se enfriaron, enredaron y midieron en etapas separadas dentro de un recinto enfriado criogénicamente. Luego, los estados del tambor se codifican en un campo de microondas reflejado que funciona de manera similar al radar.

Estudios anteriores también habían informado sobre el entrelazamiento cuántico macroscópico, pero la investigación de 2021 fue más allá: todas las medidas necesarias se registraron en lugar de inferirse, y el entrelazamiento se generó de manera determinista y no aleatoria.

En un serie de experiencias relacionadas pero distintasLos investigadores que también trabajan con tambores macroscópicos (u osciladores) en un estado de entrelazamiento cuántico han demostrado cómo es posible medir la posición y el impulso de ambos parches al mismo tiempo.

«En nuestro trabajo, los parches de tambor exhiben un movimiento cuántico colectivo». dice la física Laure Mercier de Lepinay, de la Universidad Aalto de Finlandia. «Los tambores vibran en fase opuesta entre sí, de modo que cuando uno de ellos está en una posición final del ciclo de vibración, el otro está en la posición opuesta al mismo tiempo».

«En esta situación, la incertidumbre cuántica del movimiento de los tambores se cancela si los dos tambores se tratan como una sola entidad mecánica cuántica».

Lo que hace los titulares es que circula Principio de incertidumbre de Heisenberg – la idea de que la posición y el impulso no se pueden medir perfectamente al mismo tiempo. El principio establece que registrar cualquiera de las medidas interferirá con la otra a través de un proceso llamado acción de retroalimentación cuántica.

READ  El cohete Starship de SpaceX visto desde el espacio (foto de satélite)

Además de respaldar el otro estudio al demostrar el entrelazamiento cuántico macroscópico, esta investigación en particular usa este entrelazamiento para evitar la acción de retroalimentación cuántica, esencialmente estudiando la línea entre la física clásica (donde se aplica el principio de incertidumbre) y la física cuántica (donde no parece) .

Una de las posibles aplicaciones futuras de ambos conjuntos de hallazgos se relaciona con las redes cuánticas: poder manipular y enredar objetos a escala macroscópica para que puedan alimentar las redes de comunicación de próxima generación.

«Además de las aplicaciones prácticas, estos experimentos examinan hasta qué punto en el ámbito macroscópico los experimentos pueden impulsar la observación de fenómenos claramente cuánticos», escriben los físicos Hoi-Kwan Lau y Aashish Clerk, que no participaron en los estudios, en un comentario sobre la investigación publicada en ese momento.

Los dos primero y el en segundo estudio han sido publicados en La ciencia.

Una versión de este artículo se publicó por primera vez en mayo de 2021.

Experiencia en periódicos nacionales y periódicos medianos, prensa local, periódicos estudiantiles, revistas especializadas, sitios web y blogs.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Horoscopo

SpaceX lanza el cohete Starship para su próximo vuelo de prueba (fotos, vídeo)

Published

on

SpaceX lanza el cohete Starship para su próximo vuelo de prueba (fotos, vídeo)

El cuarto vuelo de prueba del megacohete Starship de SpaceX aún no se ha realizado, pero la compañía ya se está preparando para el quinto lanzamiento.

SpaceX llevó a cabo un «fuego estático» con la etapa superior de una nave espacial hoy (8 de mayo) en su sitio Starbase en el sur de Texas, encendiendo brevemente los seis motores Raptor del vehículo de 165 pies de altura (50 metros) mientras permanecía anclado a la base. . .

Continue Reading

Horoscopo

El telescopio espacial Webb detecta la atmósfera del exoplaneta 55 Cancri e

Published

on

El telescopio espacial Webb detecta la atmósfera del exoplaneta 55 Cancri e

Los investigadores que utilizaron el telescopio espacial James Webb pueden haber encontrado rastros de gases atmosféricos que rodean 55 Cancri e, un exoplaneta rocoso ubicado a 41 años luz de la Tierra. Este descubrimiento se considera la mejor evidencia hasta el momento de la existencia de una atmósfera planetaria rocosa fuera de nuestro sistema solar.

Renyu Hu, del Laboratorio de Propulsión a Chorro (JPL) de la NASA, es el autor principal de un artículo publicado en Nature. «Webb amplía los límites de la caracterización de exoplanetas a los planetas rocosos». » dijo Hu. «Esto realmente permite un nuevo tipo de ciencia».

55 Cancri e está clasificada como una súper Tierra, con un diámetro casi el doble que el de la Tierra y una densidad ligeramente mayor. Orbita tan cerca de su estrella que su superficie probablemente esté fundida, un océano de magma hirviente. El planeta también es susceptible al bloqueo de las mareas, con un lado diurno mirando hacia la estrella en todo momento y un lado nocturno en perpetua oscuridad.

A pesar de numerosas observaciones desde su descubrimiento en tránsito en 2011, la pregunta de si 55 Cancri e tiene atmósfera o no sigue sin respuesta. A diferencia de las atmósferas de los gigantes gaseosos, las atmósferas más delgadas y densas que rodean los planetas rocosos siguen siendo difíciles de alcanzar.

Exoplaneta súper Tierra 55 Cancri e (curva de luz del eclipse secundario)
Esta curva de luz muestra el cambio en el brillo del sistema 55 Cancri a medida que el planeta rocoso 55 Cancri e, el más cercano de los cinco planetas conocidos del sistema, se mueve detrás de la estrella. Este fenómeno se conoce como eclipse secundario. Cuando el planeta está al lado de la estrella, la luz del infrarrojo medio emitida tanto por la estrella como por el lado diurno del planeta llega al telescopio y el sistema parece más brillante. Cuando el planeta está detrás de la estrella, la luz emitida por el planeta se bloquea y sólo la luz de la estrella llega al telescopio, provocando una disminución del brillo aparente. Los astrónomos pueden restar el brillo de la estrella del brillo combinado de la estrella y el planeta para calcular la cantidad de luz infrarroja procedente del lado diurno del planeta. Esto luego se utiliza para calcular la temperatura diurna y deducir si el planeta tiene atmósfera o no. El gráfico muestra los datos recopilados utilizando el modo de espectroscopía de baja resolución en el instrumento de infrarrojo medio (MIRI) de Webb en marzo de 2023. Cada uno de los puntos de datos de color púrpura muestra el brillo de la luz en una longitud de onda de 7,5 a 11,8 micrones, promediado en aproximadamente intervalos de cinco minutos. La línea gris es el mejor ajuste o curva clara del modelo que mejor se ajusta a los datos. La disminución del brillo durante el eclipse secundario es de sólo 110 partes por millón, o alrededor del 0,011 por ciento. La temperatura del planeta calculada a partir de esta observación es de unos 1.800 kelvin (unos 1.500 grados Celsius), que es significativamente más baja de lo que se esperaría si el planeta no tuviera atmósfera o sólo tuviera una fina atmósfera de vapor de roca. Esta temperatura relativamente baja indica que el calor se distribuye desde el lado diurno hacia el lado nocturno del planeta, probablemente por una atmósfera rica en sustancias volátiles.
[Image description: Diagram of a secondary eclipse and a graph of change in brightness over time. Below the diagram is a graph showing the change in brightness of mid-infrared light emitted by the star-planet system over the course of about four and a half hours. The infographic shows that the brightness of the system decreases as the planet moves behind the star.] Créditos: NASA, ESA, CSA, J. Olmsted (STScI), A. Bello-Arufe (JPL)

Para distinguir entre la posibilidad de que el planeta tenga una atmósfera o simplemente un fino velo de roca vaporizada, los investigadores utilizaron NIRCam y MIRI de Webb para medir la luz infrarroja de 4 a 12 micrones proveniente del planeta. Aunque Webb no puede capturar una imagen directa de 55 Cancri e, puede medir cambios sutiles en la luz de todo el sistema a medida que el planeta orbita la estrella.

READ  Se espera que la lluvia de estrellas Oriónidas alcance su punto máximo la próxima semana

El equipo pudo calcular la cantidad de diferentes longitudes de onda de luz infrarroja procedente del lado diurno del planeta. Este método, conocido como espectroscopia de eclipses secundarios, es similar al utilizado por otros equipos de investigación para buscar atmósferas de exoplanetas rocosos.

La primera indicación de que 55 Cancri e podría tener una atmósfera sustancial provino de mediciones de temperatura basadas en su emisión térmica. Si el planeta está cubierto de roca fundida oscura con un fino velo de roca vaporizada o si no tiene atmósfera, la temperatura durante el día debería rondar los 2.200 grados Celsius. En cambio, los datos del MIRI mostraron una temperatura relativamente baja, de alrededor de 1.540 grados Celsius. Esto indica que la energía se distribuye desde el lado diurno hacia el lado nocturno, muy probablemente por una atmósfera rica en sustancias volátiles.

Exoplaneta supertierra 55 Cancri e (espectro de emisión)Exoplaneta supertierra 55 Cancri e (espectro de emisión)
Un espectro de emisión térmica capturado por la NIRCam (cámara de infrarrojo cercano) de Webb en noviembre de 2022 y el MIRI (instrumento de infrarrojo medio) en marzo de 2023, muestra el brillo (eje y) de diferentes longitudes de onda de luz infrarroja (eje x) emitida. por el exoplaneta súper Tierra 55 Cancri e. El espectro muestra que el planeta podría estar rodeado por una atmósfera rica en dióxido de carbono o monóxido de carbono y otros volátiles, no sólo rocas vaporizadas. El gráfico compara los datos recopilados por NIRCam (puntos naranjas) y MIRI (puntos morados) con dos modelos diferentes. El modelo A, en rojo, muestra cómo debería verse el espectro de emisión de 55 Cancri e si tuviera una atmósfera de roca vaporizada. El modelo B, en azul, muestra cómo se vería el espectro de emisión si el planeta tuviera una atmósfera rica en volátiles desgasificada por un océano de magma cuyo contenido de volátiles es similar al del manto terrestre. Los datos de MIRI y NIRCam son consistentes con el modelo rico en volatilidad. La cantidad promedio de luz infrarroja emitida por el planeta (MIRI) muestra que su temperatura diurna es significativamente más baja de lo que sería si no tuviera una atmósfera que distribuyera el calor del lado diurno al lado nocturno. La caída del espectro entre 4 y 5 micrones (datos NIRCam) puede explicarse por la absorción de estas longitudes de onda por las moléculas de monóxido de carbono o dióxido de carbono en la atmósfera. El espectro se produjo midiendo el brillo de luz de 4 a 5 micrones con el espectrómetro NIRCam GRISM de Webb y de luz de 5 a 12 micrones con el espectrómetro MIRI de baja resolución, antes, durante y después de mover el planeta detrás de su estrella (el eclipse secundario). La cantidad de cada longitud de onda emitida por el planeta (eje y) se calculó restando el brillo de la estrella sola (durante el eclipse secundario) del brillo de la estrella y el planeta combinados (antes y después del eclipse). Cada observación duró aproximadamente ocho horas. Tenga en cuenta que los datos de NIRCam se han desplazado verticalmente para alinearse con el modelo B. Aunque las diferencias de brillo entre cada longitud de onda en la banda NIRCam se derivan de la observación (los datos sugieren un valle entre 4 y 5 micrones), el brillo absoluto (la posición vertical de este valle) no se pudo medir con precisión debido al ruido en los datos.
[Image description: Graph showing the brightness of light captured by Webb’s NIRCam and MIRI instruments plotted alongside two different model emission spectra, and an illustration of the planet and its star in the background.] Créditos: NASA, ESA, CSA, J. Olmsted (STScI), R. Hu (JPL), A. Bello-Arufe (JPL), M. Zhang (Universidad de Chicago), M. Zilinskas (SRON Instituto Holandés de Investigación Espacial) )

Cuando el equipo analizó los datos de NIRCam, vio tendencias consistentes con una atmósfera rica en volatilidad. «Vemos una caída en el espectro entre 4 y 5 micrones: menos luz llega al telescopio». explicó el coautor Aaron Bello-Arufe, también del JPL. «Esto sugiere la presencia de una atmósfera que contiene monóxido de carbono o dióxido de carbono, los cuales absorben estas longitudes de onda de luz».

Este apasionante descubrimiento profundizará nuestra comprensión de los exoplanetas y sus atmósferas. Las capacidades de Webb también permitirán a los científicos continuar explorando planetas rocosos y ampliar los límites de la investigación de exoplanetas.

Referencia de la revista

  1. Hu, R., Zhang, M., Paragas, K., Zilinskas, M., Van Buchem, C., Bess, M., Patel, J., Ito, Y., Damiano, M., Scheucher, M. , Oza, AV, Knutson, HA, Miguel, Y., Dragomir, D., Brandeker, A. y Demory, B. (2024). Una atmósfera secundaria en el exoplaneta rocoso 55 Cancri e. Naturaleza, 1-2. YO: 10.1038/s41586-024-07432-x
READ  El concurso Genes in Space selecciona la experiencia estudiantil ganadora para un lanzamiento al espacio

Continue Reading

Horoscopo

El telescopio de luz visible más grande del mundo espía un cúmulo de galaxias que deforma el espacio-tiempo

Published

on

El telescopio de luz visible más grande del mundo espía un cúmulo de galaxias que deforma el espacio-tiempo

Cuando los astrónomos observan galaxias, suelen realizar una especie de arqueología. Bueno, arqueología cósmica.

Básicamente, al examinar cómo es una galaxia y cómo interactúa con sus vecinas galácticas más cercanas, es posible reconstruir la historia de esa galaxia. Y una herramienta que los astrónomos pueden utilizar para tal trabajo es la Telescopio de rastreo VLT (VST), el telescopio de luz visible más grande del mundo. El VST ha publicado un tríptico de imágenes que ilustran algunas de estas galaxias lejanas necesarias para el descubrimiento del pasado galáctico.

Continue Reading

Trending